Suppr超能文献

利用激光驱动应力源对二硫化钼进行永久应变工程以制备节能型电阻式开关存储器件

Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices.

作者信息

Jang Heeyoon, Hyeong Seok-Ki, Park Byeongjin, Kim Tae-Wook, Bae Sukang, Jang Sung Kyu, Kim Yonghun, Lee Seoung-Ki

机构信息

School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun 55324, Republic of Korea.

出版信息

Nanomaterials (Basel). 2024 Nov 22;14(23):1872. doi: 10.3390/nano14231872.

Abstract

Strain engineering provides an attractive approach to enhance device performance by modulating the intrinsic electrical properties of materials. This is especially applicable to 2D materials, which exhibit high sensitivity to mechanical stress. However, conventional methods, such as using polymer substrates, to apply strain have limitations in that the strain is temporary and global. Here, we introduce a novel approach to induce permanent localized strain by fabricating a stressor on SiO/Si substrates using fiber laser irradiation, thereby enabling precise control of the surface topography. MoS is transferred onto this stressor, which results in the application of ~0.8% tensile strain. To assess the impact of the internal strain on the operation of ReRAM devices, the flat-MoS-based and the strained-MoS-based devices are compared. Both devices demonstrate forming-free, bipolar, and non-volatile switching characteristics. The strained devices exhibit a 30% reduction in the operating voltage, which can be attributed to bandgap narrowing and enhanced carrier mobility. Furthermore, the strained devices exhibit nearly a two-fold improvement in endurance, presumably because of the enhanced stability from lattice release effect. These results emphasize the potential of strain engineering for advancing the performance and durability of next-generation memory devices.

摘要

应变工程提供了一种通过调节材料的本征电学性质来提高器件性能的有效方法。这尤其适用于对机械应力表现出高灵敏度的二维材料。然而,传统的施加应变的方法,如使用聚合物衬底,存在局限性,即应变是暂时的且是全局的。在这里,我们介绍一种新颖的方法,通过使用光纤激光辐照在SiO/Si衬底上制造一个应力源来诱导永久局部应变,从而实现对表面形貌的精确控制。将MoS转移到这个应力源上,这导致施加了约0.8%的拉伸应变。为了评估内部应变对ReRAM器件操作的影响,对基于平面MoS的器件和基于应变MoS的器件进行了比较。两种器件都表现出无形成、双极和非易失性开关特性。应变器件的工作电压降低了30%,这可归因于带隙变窄和载流子迁移率增强。此外,应变器件的耐久性提高了近两倍,推测这是由于晶格释放效应增强了稳定性。这些结果强调了应变工程在提升下一代存储器件性能和耐久性方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/11643195/06c5186b127c/nanomaterials-14-01872-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验