Suppr超能文献

平面衬底上应变MoS晶体管的迁移率增强

Mobility Enhancement of Strained MoS Transistor on Flat Substrate.

作者信息

Chen Yang, Lu Donglin, Kong Lingan, Tao Quanyang, Ma Likuan, Liu Liting, Lu Zheyi, Li Zhiwei, Wu Ruixia, Duan Xidong, Liao Lei, Liu Yuan

机构信息

Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China.

Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

出版信息

ACS Nano. 2023 Aug 8;17(15):14954-14962. doi: 10.1021/acsnano.3c03626. Epub 2023 Jul 17.

Abstract

Strain engineering has been proposed as a promising method to boost the carrier mobility of two-dimensional (2D) semiconductors. However, state-of-the-art straining approaches are largely based on putting 2D semiconductors on flexible substrates or rough substrate with nanostructures (., nanoparticles, nanorods, ripples), where the observed mobility change is not only dependent on channel strain but could be impacted by the change of dielectric environment as well as rough interface scattering. Therefore, it remains an open question whether the pure lattice strain could improve the carrier mobilities of 2D semiconductors, limiting the achievement of high-performance 2D transistors. Here, we report a strain engineering approach to fabricate highly strained MoS transistors on a flat substrate. By mechanically laminating a prefabricated MoS transistor onto a custom-designed trench structure on flat substrate, well-controlled strain can be uniformly generated across the 2D channel. In the meantime, the substrate and the back-gate dielectric layer remain flat without any roughness-induced scattering effect or variation of the dielectric environment. Based on this technique, we demonstrate the MoS electron mobility could be enhanced by tension strain and decreased by compression strain, consistent with theoretical predictions. The highest mobility enhancement is 152% for monolayer MoS and 64% for bilayer MoS transistors, comparable to that of a silicon device. Our method not only provides a compatible approach to uniformly strain the layered semiconductors on flat and solid substrate but also demonstrates an effective method to boost the carrier mobilities of 2D transistors.

摘要

应变工程已被提议作为一种提高二维(2D)半导体载流子迁移率的有前景的方法。然而,目前最先进的应变方法主要是将二维半导体置于柔性衬底或具有纳米结构(如纳米颗粒、纳米棒、波纹)的粗糙衬底上,在这种情况下,观察到的迁移率变化不仅取决于沟道应变,还可能受到介电环境变化以及粗糙界面散射的影响。因此,纯晶格应变能否提高二维半导体的载流子迁移率仍是一个悬而未决的问题,这限制了高性能二维晶体管的实现。在此,我们报告一种应变工程方法,用于在平坦衬底上制造高应变的MoS晶体管。通过将预制的MoS晶体管机械层压到平坦衬底上定制设计的沟槽结构上,可以在二维沟道上均匀产生可控应变。与此同时,衬底和背栅介电层保持平坦,没有任何粗糙度引起的散射效应或介电环境变化。基于该技术,我们证明了MoS的电子迁移率可因拉伸应变而提高,因压缩应变而降低,这与理论预测一致。单层MoS晶体管的最高迁移率增强为152%,双层MoS晶体管为64%,与硅器件相当。我们的方法不仅提供了一种在平坦且坚实的衬底上对层状半导体进行均匀应变的兼容方法,还展示了一种提高二维晶体管载流子迁移率的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验