Machín Abniel, Cotto María C, Márquez Francisco, Díaz-Sánchez Jesús, Polop Celia, Morant Carmen
Division of Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA.
Nanomaterials Research Group, School of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA.
Nanomaterials (Basel). 2024 Nov 28;14(23):1911. doi: 10.3390/nano14231911.
This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g. Notably, the hydrogen production rate achieved by a composite comprising 5% MoS, 1.7% SiNWs, and 13.3% SWNTs at an 80% ZnONPs base was approximately 3909 µmol hg under 500 nm wavelength radiation, marking a significant improvement of over 40-fold relative to pristine ZnONPs. This enhancement underscores the remarkable photocatalytic efficiency of the composites, maintaining high hydrogen production rates above 1500 µmol hg even under radiation wavelengths exceeding 600 nm. Furthermore, the potential of these composites for energy storage and conversion applications, specifically within rechargeable lithium-ion batteries, was investigated. Composites, similar to those utilized for hydrogen production but excluding ZnONPs to address its limited theoretical capacity and electrical conductivity, were developed. The focus was on utilizing MoS, SiNWs, and SWNTs as anode materials for Li-ion batteries. This strategic combination significantly improved the electronic conductivity and mechanical stability of the composite. Specifically, the composite with 56% MoS, 24% SiNWs, and 20% SWNTs offered remarkable cyclic performance with high specific capacity values, achieving a complete stability of 1000 mA h g after 100 cycles at 1 A g. These results illuminate the dual utility of the composites, not only as innovative catalysts for hydrogen production but also as advanced materials for energy storage technologies, showcasing their potential in contributing to sustainable energy solutions.
本研究通过使用与MoS、单壁碳纳米管(SWNTs)和晶体硅纳米线(SiNWs)集成的ZnO纳米颗粒的协同组装,探索在紫外-可见辐射下通过水分解反应产生氢气的潜力,以制备MoS-SiNWs-SWNTs@ZnONPs纳米复合材料。对通过化学和物理剥离方法合成的MoS进行的对比分析表明,化学剥离的MoS表现出优异的性能,因此被选用于所有后续测量。这些纳米结构材料表现出优异的表面特性,比表面积超过300 m²/g。值得注意的是,在80% ZnONPs基体的基础上,由5% MoS、1.7% SiNWs和13.3% SWNTs组成的复合材料在500 nm波长辐射下的产氢速率约为3909 μmol h⁻¹g⁻¹,相对于原始ZnONPs有超过40倍的显著提高。这种增强突出了复合材料卓越的光催化效率,即使在辐射波长超过600 nm时,产氢速率仍保持在1500 μmol h⁻¹g⁻¹以上。此外,还研究了这些复合材料在能量存储和转换应用中的潜力,特别是在可充电锂离子电池中的应用。开发了与用于制氢的复合材料类似但不含ZnONPs的复合材料,以解决其有限的理论容量和电导率问题。重点是将MoS、SiNWs和SWNTs用作锂离子电池的负极材料。这种策略性组合显著提高了复合材料的电子导电性和机械稳定性。具体而言,含有56% MoS、24% SiNWs和20% SWNTs的复合材料具有出色的循环性能和高比容量值,在1 A g⁻¹下循环100次后实现了1000 mA h g⁻¹的完全稳定性。这些结果揭示了复合材料的双重用途,不仅作为创新的制氢催化剂,还作为能量存储技术的先进材料,展示了它们在促进可持续能源解决方案方面的潜力。