Suppr超能文献

用于光催化中增强界面电荷转移的微波场优化的氧化石墨烯/二氧化钛纳米材料

Microwave-Field-Optimized GO/TiO Nanomaterials for Enhanced Interfacial Charge Transfer in Photocatalysis.

作者信息

Duan Xu, Liu Weizao, Guo Jing

机构信息

College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.

出版信息

Nanomaterials (Basel). 2024 Nov 28;14(23):1912. doi: 10.3390/nano14231912.

Abstract

The swift recombination of photo-induced electrons and holes is a major obstacle to the catalytic efficiency of TiO nanomaterials, but the incorporation of graphene oxide and out-field modification is considered a potent method to augment photocatalytic properties. In this work, a series of GO/TiO photocatalysts were successfully optimized by a microwave field. As determined by transient photocurrent response and electrochemical impedance spectroscopy (EIS) tests, microwave irradiation at 600 W for 5 min on the GO/TiO photocatalyst promoted interfacial charge transfer and suppressed charge recombination. Through systematic characterizations, GT(600/5) exhibited the highest photooxidation rate (81.5%, 60 min) of Rhodamine B under visible light compared to other homologous samples, owing to the minimum grain size (16.914 nm), enlarged specific surface area (151 m/g), maximum light response wavelength (510 nm), narrowest bandgap width (2.90 eV), and stronger oxidized hydroxyl radicals (•OH). Given the environmental friendliness, greenness, and sustainability, this study could present an efficient and economical strategy for synthesizing and fine-tuning photocatalysts.

摘要

光生电子和空穴的快速复合是TiO纳米材料催化效率的主要障碍,但引入氧化石墨烯和外场修饰被认为是增强光催化性能的有效方法。在这项工作中,通过微波场成功优化了一系列GO/TiO光催化剂。通过瞬态光电流响应和电化学阻抗谱(EIS)测试确定,在GO/TiO光催化剂上600 W微波辐照5分钟促进了界面电荷转移并抑制了电荷复合。通过系统表征,与其他同源样品相比,GT(600/5)在可见光下对罗丹明B的光氧化率最高(60分钟时为81.5%),这归因于其最小的晶粒尺寸(16.914 nm)、增大的比表面积(151 m/g)、最大的光响应波长(510 nm)、最窄的带隙宽度(2.90 eV)以及更强的氧化羟基自由基(•OH)。鉴于其环境友好性、绿色性和可持续性,本研究可为光催化剂的合成和微调提供一种高效且经济的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5d/11643811/c990ffd1cd52/nanomaterials-14-01912-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验