Suppr超能文献

细胞学数据的数值评估。III. 用于鉴别的特征选择。

Numerical evaluation of cytologic data. III. Selection of features for discrimination.

作者信息

Bartels P H

出版信息

Anal Quant Cytol. 1979 Nov-Dec;1(3):153-9.

PMID:396839
Abstract

The proper selection of variables is important in assembling a profile to best describe a given group, whether of patients or cells, vis-à-vis other groups. The need often arises to determine which variables in comparable profiles best discriminate between the profiles. Three techniques for the evaluation and selection of variables on the basis of their potentiality for discrimination are discussed in this article. The Kruskal Wallis test is useful in determining if a certain feature (variable) has any statistical significance between groups. The ambiguity function after Genchi and Mori and the measure of detectability (d') are discussed as direct measurements of a feature's ability to discriminate between groups. Fully worked numerical example suitable for execution on a pocket calculator are given.

摘要

在构建一个最能描述给定群体(无论是患者群体还是细胞群体)相对于其他群体的概况时,正确选择变量非常重要。经常需要确定在可比概况中哪些变量能最好地区分这些概况。本文讨论了三种基于变量的区分潜力来评估和选择变量的技术。Kruskal Wallis检验有助于确定某个特征(变量)在不同群体之间是否具有任何统计学意义。文中讨论了Genchi和Mori提出的模糊函数以及可检测性度量(d'),作为对一个特征区分不同群体能力的直接测量方法。还给出了适合用袖珍计算器执行的完整数值示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验