Suppr超能文献

AEmiGAP:基于深度学习方法的基于自动编码器的微小RNA-基因关联预测

AEmiGAP: AutoEncoder-Based miRNA-Gene Association Prediction Using Deep Learning Method.

作者信息

Yoon Seungwon, Yoon Hyewon, Cho Jaeeun, Lee Kyuchul

机构信息

Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.

出版信息

Int J Mol Sci. 2024 Dec 5;25(23):13075. doi: 10.3390/ijms252313075.

Abstract

MicroRNAs (miRNAs) play a crucial role in gene regulation and are strongly linked to various diseases, including cancer. This study presents AEmiGAP, an advanced deep learning model that integrates autoencoders with long short-term memory (LSTM) networks to predict miRNA-gene associations. By enhancing feature extraction through autoencoders, AEmiGAP captures intricate, latent relationships between miRNAs and genes with unprecedented accuracy, outperforming all existing models in miRNA-gene association prediction. A thoroughly curated dataset of positive and negative miRNA-gene pairs was generated using distance-based filtering methods, significantly improving the model's AUC and overall predictive accuracy. Additionally, this study proposes two case studies to highlight AEmiGAP's application: first, a top 30 list of miRNA-gene pairs with the highest predicted association scores among previously unknown pairs, and second, a list of the top 10 miRNAs strongly associated with each of five key oncogenes. These findings establish AEmiGAP as a new benchmark in miRNA-gene association prediction, with considerable potential to advance both cancer research and precision medicine.

摘要

微小RNA(miRNA)在基因调控中发挥着关键作用,并且与包括癌症在内的各种疾病密切相关。本研究提出了AEmiGAP,这是一种先进的深度学习模型,它将自动编码器与长短期记忆(LSTM)网络相结合,以预测miRNA与基因的关联。通过自动编码器增强特征提取,AEmiGAP以前所未有的准确性捕捉miRNA与基因之间复杂的潜在关系,在miRNA与基因关联预测方面优于所有现有模型。使用基于距离的过滤方法生成了一个经过精心策划的正负miRNA-基因对数据集,显著提高了模型的AUC和整体预测准确性。此外,本研究提出了两个案例研究以突出AEmiGAP的应用:第一,在先前未知的对中预测关联分数最高的前30个miRNA-基因对列表;第二,与五个关键癌基因中的每一个密切相关的前10个miRNA列表。这些发现确立了AEmiGAP作为miRNA-基因关联预测的新基准,在推进癌症研究和精准医学方面具有相当大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82cd/11641653/50c692d3cf80/ijms-25-13075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验