Pavlovskii Alexander A, Pushnitsa Konstantin, Kosenko Alexandra, Novikov Pavel, Popovich Anatoliy A
Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia.
Materials (Basel). 2024 Dec 2;17(23):5904. doi: 10.3390/ma17235904.
In recent years, 3D printing has emerged as a promising technology in energy storage, particularly for the fabrication of Li-ion battery electrodes. This innovative manufacturing method offers significant material composition and electrode structure flexibility, enabling more complex and efficient designs. While traditional Li-ion battery fabrication methods are well-established, 3D printing opens up new possibilities for enhancing battery performance by allowing for tailored geometries, efficient material usage, and integrating multifunctional components. This article examines three key 3D printing methods for fabricating Li-ion battery electrodes: (1) material extrusion (ME), which encompasses two subcategories-fused deposition modeling (FDM), also referred to as fused filament fabrication (FFF), and direct ink writing (DIW); (2) material jetting (MJ), including inkjet printing (IJP) and aerosol jet printing (AJP) methods; and (3) vat photopolymerization (VAT-P), which includes the stereolithographic apparatus (SLA) subcategory. These methods have been applied in fabricating substrates, thin-film electrodes, and electrolytes for half-cell and full-cell Li-ion batteries. This discussion focuses on their strengths, limitations, and potential advancements for energy storage applications.
近年来,3D打印已成为储能领域一项颇具前景的技术,尤其在锂离子电池电极制造方面。这种创新的制造方法在材料成分和电极结构方面具有显著的灵活性,能够实现更复杂、高效的设计。虽然传统的锂离子电池制造方法已成熟,但3D打印通过允许定制几何形状、高效使用材料以及集成多功能组件,为提高电池性能开辟了新的可能性。本文研究了用于制造锂离子电池电极的三种关键3D打印方法:(1)材料挤出(ME),它包括两个子类别——熔融沉积建模(FDM),也称为熔丝制造(FFF),以及直接墨水书写(DIW);(2)材料喷射(MJ),包括喷墨打印(IJP)和气溶胶喷射打印(AJP)方法;(3)光聚合反应(VAT-P),其中包括立体光刻设备(SLA)子类别。这些方法已应用于制造用于半电池和全电池锂离子电池的基板、薄膜电极和电解质。本讨论聚焦于它们在储能应用中的优势、局限性和潜在进展。