Suppr超能文献

用于电池的3D打印赋能设计与制造策略:综述

3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review.

作者信息

Fonseca Nathan, Thummalapalli Sri Vaishnavi, Jambhulkar Sayli, Ravichandran Dharneedar, Zhu Yuxiang, Patil Dhanush, Thippanna Varunkumar, Ramanathan Arunachalam, Xu Weiheng, Guo Shenghan, Ko Hyunwoong, Fagade Mofe, Kannan Arunchala M, Nian Qiong, Asadi Amir, Miquelard-Garnier Guillaume, Dmochowska Anna, Hassan Mohammad K, Al-Ejji Maryam, El-Dessouky Hassan M, Stan Felicia, Song Kenan

机构信息

Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA.

Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA.

出版信息

Small. 2023 Dec;19(50):e2302718. doi: 10.1002/smll.202302718. Epub 2023 Jul 27.

Abstract

Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.

摘要

锂离子电池(LIBs)对日常生活产生了重大影响,在消费电子、电动汽车、医疗设备、航空航天和电动工具等各个行业都有广泛应用。然而,由于与其他电池相比具有高能量和功率密度值,随着各领域对LIBs的需求迅速增加,它们仍面临一些问题(即枝晶生长导致的安全性、制造成本、随机孔隙率以及基本和平面几何形状),这些问题阻碍了它们的广泛应用。增材制造(AM)是一种在储能设备中创建精确和可编程结构的有前途的技术。本综述首先总结了基于光、丝材、粉末和喷射的3D打印方法以及每种增材制造技术的当前趋势和局限性。本文还深入探讨了用于LIBs的3D打印电极(阳极和阴极)和固态电解质,强调了当前的先进材料、制造方法以及性能。此外,还介绍了增材制造在电化学储能(EES)应用中的当前挑战,包括材料有限、加工精度低、完整电池打印的协同设计/协同制造概念、用于加工优化和数据分析的机器学习(ML)/人工智能(AI)、环境风险以及4D打印在先进电池应用中的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验