Suppr超能文献

基于连续小波变换图像增强和蚁群优化AlexNet的铣床故障诊断方法改进

Enhanced Fault Diagnosis in Milling Machines Using CWT Image Augmentation and Ant Colony Optimized AlexNet.

作者信息

Ullah Niamat, Umar Muhammad, Kim Jae-Young, Kim Jong-Myon

机构信息

PD Technology Co., Ltd., Ulsan 44610, Republic of Korea.

出版信息

Sensors (Basel). 2024 Nov 22;24(23):7466. doi: 10.3390/s24237466.

Abstract

A method is proposed for fault classification in milling machines using advanced image processing and machine learning. First, raw data are obtained from real-world industries, representing various fault types (tool, bearing, and gear faults) and normal conditions. These data are converted into two-dimensional continuous wavelet transform (CWT) images for superior time-frequency localization. The images are then augmented to increase dataset diversity using techniques such as rotating, scaling, and flipping. A contrast enhancement filter is applied to highlight key features, thereby improving the model's learning and fault detection capability. The enhanced images are fed into a modified AlexNet model with three residual blocks to efficiently extract both spatial and temporal features from the CWT images. The modified AlexNet architecture is particularly well-suited to identifying complex patterns associated with different fault types. The deep features are optimized using ant colony optimization to reduce dimensionality while preserving relevant information, ensuring effective feature representation. These optimized features are then classified using a support vector machine, effectively distinguishing between fault types and normal conditions with high accuracy. The proposed method provides significant improvements in fault classification while outperforming state-of-the-art methods. It is thus a promising solution for industrial fault diagnosis and has potential for broader applications in predictive maintenance.

摘要

提出了一种利用先进图像处理和机器学习对铣床故障进行分类的方法。首先,从实际工业中获取原始数据,这些数据代表了各种故障类型(刀具、轴承和齿轮故障)以及正常状态。这些数据被转换为二维连续小波变换(CWT)图像,以实现卓越的时频定位。然后,使用旋转、缩放和翻转等技术对图像进行增强,以增加数据集的多样性。应用对比度增强滤波器来突出关键特征,从而提高模型的学习和故障检测能力。将增强后的图像输入到具有三个残差块的改进AlexNet模型中,以有效地从CWT图像中提取空间和时间特征。改进后的AlexNet架构特别适合识别与不同故障类型相关的复杂模式。利用蚁群优化对深度特征进行优化,以降低维度同时保留相关信息,确保有效的特征表示。然后使用支持向量机对这些优化后的特征进行分类,能够高精度地有效区分故障类型和正常状态。所提出的方法在故障分类方面有显著改进,同时优于现有方法。因此,它是工业故障诊断的一个有前景的解决方案,在预测性维护中具有更广泛应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fda/11644436/b0fa4b30c393/sensors-24-07466-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验