Suppr超能文献

海洋水产养殖网清洁机器人的研究进展

Research Advances in Marine Aquaculture Net-Cleaning Robots.

作者信息

Liu Heng, Jiang Chuhua, Chen Junhua, Li Hao, Chen Yongqi

机构信息

College of Science and Technology Ningbo University, Ningbo 315300, China.

College of Science and Technology, Ningbo University, Ningbo 315211, China.

出版信息

Sensors (Basel). 2024 Nov 26;24(23):7555. doi: 10.3390/s24237555.

Abstract

In the realm of marine aquaculture, the netting of cages frequently accumulates marine fouling, which impedes water circulation and poses safety hazards. Traditional manual cleaning methods are marked by inefficiency, high labor demands, substantial costs, and considerable environmental degradation. This paper initially presents the current utilization of net-cleaning robots in the cleaning, underwater inspection, and monitoring of aquaculture cages, highlighting their benefits in enhancing operational efficiency and minimizing costs. Subsequently, it reviews key technologies such as underwater image acquisition, visual recognition, adhesion-based movement, efficient fouling removal, motion control, and positioning navigation. Ultimately, it anticipates the future trajectory of net-cleaning robots, emphasizing their potential for intelligence and sustainability, which could drive the marine aquaculture industry towards a more efficient and eco-friendly era.

摘要

在海水养殖领域,养殖网箱的网常常会积累海洋污垢,这会阻碍水体循环并带来安全隐患。传统的人工清洁方法存在效率低下、劳动力需求大、成本高昂以及对环境造成严重破坏等问题。本文首先介绍了网箱清洁机器人目前在水产养殖网箱清洁、水下检查和监测方面的应用情况,强调了它们在提高运营效率和降低成本方面的优势。随后,回顾了水下图像采集、视觉识别、基于附着力的移动、高效污垢清除、运动控制和定位导航等关键技术。最后,展望了网箱清洁机器人的未来发展轨迹,强调了它们在智能化和可持续性方面的潜力,这可能会推动海水养殖业迈向一个更高效、更环保的时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/11644302/9c20332f96f7/sensors-24-07555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验