Carvalho Eduardo, Ferreira Bruno, Gomes Ana Claudia, Gonçalves Camilo, Dias Giovanni, Torres Renato, Pessin Gustavo
Instituto Tecnógico Vale Desenvolvimento Sustentável, Belém 66055-090, Brazil.
SENAI Innovation Institute for Mineral Technologies, Belém 66035-080, Brazil.
Sensors (Basel). 2024 Nov 29;24(23):7642. doi: 10.3390/s24237642.
In every business, equipment requires repair services. Over time, equipment wears out; however, with well-conducted and guided maintenance, this degradation can be controlled, and failed equipment can be restored to operational status. Preventive maintenance allows this concept to be applied, given the great advantages for large companies in reusing equipment and machinery, always putting the worker's health and safety first. Rail transport has several pieces of equipment that can be reused if they are in a regular and well-defined maintenance cycle. In this sense, this article sought to create a method using real data for identifying cracks in wagons. Through the use of computer vision algorithms to prepare the data, along with several machine learning classification algorithms to locate cracks in train cars, the classification used properly annotated images and obtained great results, with a best case 98.10% hit-rate when wagons had a crack problem.
在每一项业务中,设备都需要维修服务。随着时间的推移,设备会磨损;然而,通过良好的维护和指导,这种退化是可以控制的,出现故障的设备也可以恢复到运行状态。鉴于预防性维护对大公司在重复使用设备和机械方面具有巨大优势,同时始终将工人的健康和安全放在首位,因此可以应用这一概念。铁路运输中有几件设备,如果它们处于常规且明确的维护周期内,就可以重复使用。从这个意义上说,本文试图创建一种利用实际数据识别货车裂缝的方法。通过使用计算机视觉算法来处理数据,以及几种机器学习分类算法来定位火车车厢中的裂缝,该分类使用了正确标注的图像并取得了很好的结果,在货车存在裂缝问题的最佳情况下,命中率达到了98.10%。