Suppr超能文献

深度学习架构在复杂免疫荧光核图像分割中的评估。

Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.

出版信息

IEEE Trans Med Imaging. 2021 Jul;40(7):1934-1949. doi: 10.1109/TMI.2021.3069558. Epub 2021 Jun 30.

Abstract

Separating and labeling each nuclear instance (instance-aware segmentation) is the key challenge in nuclear image segmentation. Deep Convolutional Neural Networks have been demonstrated to solve nuclear image segmentation tasks across different imaging modalities, but a systematic comparison on complex immunofluorescence images has not been performed. Deep learning based segmentation requires annotated datasets for training, but annotated fluorescence nuclear image datasets are rare and of limited size and complexity. In this work, we evaluate and compare the segmentation effectiveness of multiple deep learning architectures (U-Net, U-Net ResNet, Cellpose, Mask R-CNN, KG instance segmentation) and two conventional algorithms (Iterative h-min based watershed, Attributed relational graphs) on complex fluorescence nuclear images of various types. We propose and evaluate a novel strategy to create artificial images to extend the training set. Results show that instance-aware segmentation architectures and Cellpose outperform the U-Net architectures and conventional methods on complex images in terms of F1 scores, while the U-Net architectures achieve overall higher mean Dice scores. Training with additional artificially generated images improves recall and F1 scores for complex images, thereby leading to top F1 scores for three out of five sample preparation types. Mask R-CNN trained on artificial images achieves the overall highest F1 score on complex images of similar conditions to the training set images while Cellpose achieves the overall highest F1 score on complex images of new imaging conditions. We provide quantitative results demonstrating that images annotated by under-graduates are sufficient for training instance-aware segmentation architectures to efficiently segment complex fluorescence nuclear images.

摘要

分离和标记每个核实例(实例感知分割)是核图像分割的关键挑战。深度卷积神经网络已被证明可解决不同成像模式下的核图像分割任务,但尚未对复杂免疫荧光图像进行系统比较。基于深度学习的分割需要标注数据集进行训练,但标注的荧光核图像数据集很少且规模和复杂度有限。在这项工作中,我们评估和比较了多种深度学习架构(U-Net、U-Net ResNet、Cellpose、Mask R-CNN、KG 实例分割)和两种传统算法(基于迭代 h-min 的分水岭、属性关系图)在各种类型的复杂荧光核图像上的分割效果。我们提出并评估了一种创建人工图像以扩展训练集的新策略。结果表明,在 F1 分数方面,实例感知分割架构和 Cellpose 优于 U-Net 架构和传统方法,而 U-Net 架构的总体平均 Dice 得分更高。使用额外的人工生成图像进行训练可以提高复杂图像的召回率和 F1 分数,从而使五种样本制备类型中的三种达到了最高 F1 分数。在与训练集图像相似条件下的复杂图像上,基于人工图像训练的 Mask R-CNN 实现了总体最高的 F1 分数,而在新成像条件下的复杂图像上,Cellpose 实现了总体最高的 F1 分数。我们提供了定量结果,证明了由本科生标注的图像足以训练实例感知分割架构,从而有效地分割复杂的荧光核图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验