Suppr超能文献

医疗保健中的数据溯源:方法、挑战与未来方向。

Data Provenance in Healthcare: Approaches, Challenges, and Future Directions.

机构信息

ADAPT Centre, Innovation Value Institute, Maynooth University, W23 F2H6 Maynooth, Ireland.

Department of Computer Science, COMSATS University, Federal Capital, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2023 Jul 18;23(14):6495. doi: 10.3390/s23146495.

Abstract

Data provenance means recording data origins and the history of data generation and processing. In healthcare, data provenance is one of the essential processes that make it possible to track the sources and reasons behind any problem with a user's data. With the emergence of the General Data Protection Regulation (GDPR), data provenance in healthcare systems should be implemented to give users more control over data. This SLR studies the impacts of data provenance in healthcare and GDPR-compliance-based data provenance through a systematic review of peer-reviewed articles. The SLR discusses the technologies used to achieve data provenance and various methodologies to achieve data provenance. We then explore different technologies that are applied in the healthcare domain and how they achieve data provenance. In the end, we have identified key research gaps followed by future research directions.

摘要

数据起源是指记录数据的来源以及数据生成和处理的历史。在医疗保健领域,数据起源是实现用户对其数据的来源和问题背后原因进行跟踪的关键流程之一。随着《通用数据保护条例》(GDPR)的出现,医疗保健系统中应实施数据起源,以便使用户对数据拥有更多控制权。本 SLR 通过对同行评议文章的系统回顾,研究了医疗保健中数据起源和基于 GDPR 合规的数据起源的影响。本 SLR 讨论了用于实现数据起源的技术和实现数据起源的各种方法。然后,我们探讨了应用于医疗保健领域的不同技术以及它们如何实现数据起源。最后,我们确定了关键的研究空白,并提出了未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a2/10384601/75ee16393455/sensors-23-06495-g012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验