Salgado-Gomes-Sagaz Fabio, Zorrilla-Muñoz Vanessa, Garcia-Aracil Nicolas
Systems Engineering and Automation Department, University Miguel Hernández of Elche, 03202 Elche, Spain.
Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain.
Sensors (Basel). 2024 Dec 4;24(23):7765. doi: 10.3390/s24237765.
Recent advancements in patient rehabilitation integrate both traditional and modern techniques to enhance treatment efficacy and accessibility. Hydrotherapy, leveraging water's physical properties, is crucial for reducing joint stress, alleviating pain, and improving circulation. The rehabilitation of upper limbs benefits from technologies like virtual reality and robotics which, when combined with hydrotherapy, can accelerate recovery. Exoskeletons, which support and enhance movement, have shown promise for patients with neurological conditions or injuries. This study focused on implementing and comparing proportional-integral-derivative (PID) and fuzzy logic controllers (FLCs) in a lower limb exoskeleton. Initial PID control tests revealed instability, leading to a switch to a PI controller for better stability and the development of a fuzzy control system. A hybrid strategy was then applied, using FLC for smooth initial movements and PID for precise tracking, with optimized weighting to improve performance. The combination of PID and fuzzy controllers, with tailored weighting (70% for moderate angles and 100% for extensive movements), enhanced the exoskeleton's stability and precision. This study also explored quantum computing techniques, such as the quantum approximate optimization algorithm (QAOA) and the quantum Fourier transform (QFT), to optimize controller tuning and improve real-time control, highlighting the potential of these advanced tools in refining rehabilitation devices.
患者康复领域的最新进展融合了传统技术与现代技术,以提高治疗效果和可及性。水疗法利用水的物理特性,对于减轻关节压力、缓解疼痛和改善血液循环至关重要。上肢康复受益于虚拟现实和机器人技术等,这些技术与水疗法相结合,可以加速康复。外骨骼能够支撑并增强运动能力,已显示出对患有神经系统疾病或损伤的患者具有应用前景。本研究聚焦于在下肢外骨骼中实施和比较比例积分微分(PID)控制器和模糊逻辑控制器(FLC)。最初的PID控制测试显示不稳定,因此转而采用PI控制器以获得更好的稳定性,并开发了一种模糊控制系统。随后应用了一种混合策略,在初始运动较平稳时使用FLC,在精确跟踪时使用PID,并通过优化权重来提高性能。PID和模糊控制器相结合,并采用定制的权重(中等角度时为70%,大幅度运动时为100%),增强了外骨骼的稳定性和精度。本研究还探索了量子计算技术,如量子近似优化算法(QAOA)和量子傅里叶变换(QFT),以优化控制器调整并改善实时控制,突出了这些先进工具在改进康复设备方面的潜力。