Kuznetsov Oleksandr, Frontoni Emanuele, Chernov Kyrylo, Kuznetsova Kateryna, Shevchuk Ruslan, Karpinski Mikolaj
Department of Theoretical and Applied Sciences, eCampus University, Via Isimbardi 10, 22060 Novedrate, Italy.
Department of Political Sciences, Communication and International Relations, University of Macerata, Via Crescimbeni, 30/32, 62100 Macerata, Italy.
Sensors (Basel). 2024 Dec 6;24(23):7815. doi: 10.3390/s24237815.
This paper presents an extensive investigation into the application of artificial intelligence, specifically Convolutional Neural Networks (CNNs), in image steganography detection. We initially evaluated the state-of-the-art steganalysis model, SRNet, on various image steganography techniques, including WOW, HILL, S-UNIWARD, and the innovative Spread Spectrum Image Steganography (SSIS). We found SRNet's performance on SSIS detection to be lower compared to other methods, prompting us to fine-tune the model using SSIS datasets. Subsequent experiments showed significant improvement in SSIS detection, albeit at the cost of minor performance degradation as to other techniques. Our findings underscore the potential and adaptability of AI-based steganalysis models. However, they also highlight the need for a delicate balance in model adaptation to maintain effectiveness across various steganography techniques. We suggest future research directions, including multi-task learning strategies and other machine learning techniques, to further improve the robustness and versatility of steganalysis models.
本文对人工智能,特别是卷积神经网络(CNN)在图像隐写术检测中的应用进行了广泛研究。我们首先在包括WOW、HILL、S-UNIWARD以及创新的扩频图像隐写术(SSIS)在内的各种图像隐写术技术上评估了当前最先进的隐写分析模型SRNet。我们发现,与其他方法相比,SRNet在SSIS检测方面的性能较低,这促使我们使用SSIS数据集对模型进行微调。后续实验表明,SSIS检测有显著改善,尽管代价是在其他技术方面有轻微的性能下降。我们的研究结果强调了基于人工智能的隐写分析模型的潜力和适应性。然而,它们也凸显了在模型适配中需要进行微妙平衡,以在各种隐写术技术中保持有效性。我们提出了未来的研究方向,包括多任务学习策略和其他机器学习技术,以进一步提高隐写分析模型的鲁棒性和通用性。