Priyadarshini Diana, Abrahamsson Tobias, Biesmans Hanne, Strakosas Xenofon, Gerasimov Jennifer Y, Berggren Magnus, Simon Daniel T, Musumeci Chiara
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden.
Langmuir. 2024 Dec 31;40(52):27299-27306. doi: 10.1021/acs.langmuir.4c03373. Epub 2024 Dec 17.
The dual capability of conductive polymers to conduct ions and electrons, in combination with their flexible mechanical properties, makes them ideal for bioelectronic applications. This study explores the enzymatic polymerization of water-soluble π-conjugated monomers on native lipid bilayers derived from the F11 cell line, mimicking mammalian neural membranes. Enzymatic polymerization was catalyzed using horseradish peroxidase (HRP) in the presence of oxidant hydrogen peroxide (HO) and monitored via electrochemical quartz crystal microbalance with dissipation (EQCM-D) and electrochemical impedance spectroscopy (EIS). Results showed polymerization with HRP. The structural properties of the formed polymer films were characterized using atomic force microscopy (AFM), while the quality of the F11 native lipid vesicles and bilayer was respectively assessed through dynamic light scattering (DLS) and fluorescence recovery after photobleaching (FRAP) techniques. This work demonstrates, for the first time, the feasibility of the formation of conductive polymers on native lipid membranes, offering a promising approach for the development of minimally invasive neural electrodes to diagnose and treat neurological disorders.
导电聚合物传导离子和电子的双重能力,再加上其灵活的机械性能,使其成为生物电子应用的理想材料。本研究探索了水溶性π共轭单体在源自F11细胞系的天然脂质双层上的酶促聚合反应,模拟哺乳动物神经膜。在氧化剂过氧化氢(HO)存在的情况下,使用辣根过氧化物酶(HRP)催化酶促聚合反应,并通过电化学石英晶体微天平与耗散技术(EQCM-D)和电化学阻抗谱(EIS)进行监测。结果表明发生了HRP引发的聚合反应。使用原子力显微镜(AFM)对形成的聚合物膜的结构特性进行了表征,同时分别通过动态光散射(DLS)和光漂白后荧光恢复(FRAP)技术评估了F11天然脂质囊泡和双层的质量。这项工作首次证明了在天然脂质膜上形成导电聚合物的可行性,为开发用于诊断和治疗神经系统疾病的微创神经电极提供了一种有前景的方法。