Tommasini Giuseppina, Dufil Gwennaël, Fardella Federica, Strakosas Xenofon, Fergola Eugenio, Abrahamsson Tobias, Bliman David, Olsson Roger, Berggren Magnus, Tino Angela, Stavrinidou Eleni, Tortiglione Claudia
Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy.
Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden.
Bioact Mater. 2021 Aug 28;10:107-116. doi: 10.1016/j.bioactmat.2021.08.025. eCollection 2022 Apr.
Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, , defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that , an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the tissue and the secreted mucus. Furthermore, the introduction and polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and biofabrication of hybrid functional materials and devices.
利用生物体的生物催化机制来制造功能性生物电子界面,定义了一类新型的微生物杂交体,实现了技术与活生物系统的无缝集成。此前,我们已经证明了共轭低聚物在植物结构内形成导体的聚合过程。在此,我们扩展这一概念,报告称一种无脊椎动物在表达过氧化物酶活性的细胞内以及分泌以促进水下表面粘附的粘附材料内聚合共轭低聚物ETE-S。所得的共轭聚合物形成电子传导和电化学活性的微米级区域,这些区域相互连接,形成延伸超过100微米的渗流传导途径,完全整合在组织和分泌的粘液中。此外,ETE-S的引入和聚合可以用作生化标记,以追踪出芽(繁殖)和再生的动态过程。这项工作为在动物组织中明确的自组织电子学调节生物功能以及混合功能材料和器件的生物制造铺平了道路。