Suppr超能文献

在模型脂质膜上酶聚合的有机导体。

Enzymatically Polymerized Organic Conductors on Model Lipid Membranes.

机构信息

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.

Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden.

出版信息

Langmuir. 2023 Jun 13;39(23):8196-8204. doi: 10.1021/acs.langmuir.3c00654. Epub 2023 Jun 2.

Abstract

Seamless integration between biological systems and electrical components is essential for enabling a twinned biochemical-electrical recording and therapy approach to understand and combat neurological disorders. Employing bioelectronic systems made up of conjugated polymers, which have an innate ability to transport both electronic and ionic charges, provides the possibility of such integration. In particular, translating enzymatically polymerized conductive wires, recently demonstrated in plants and simple organism systems, into mammalian models, is of particular interest for the development of next-generation devices that can monitor and modulate neural signals. As a first step toward achieving this goal, enzyme-mediated polymerization of two thiophene-based monomers is demonstrated on a synthetic lipid bilayer supported on a Au surface. Microgravimetric studies of conducting films polymerized in situ provide insights into their interactions with a lipid bilayer model that mimics the cell membrane. Moreover, the resulting electrical and viscoelastic properties of these self-organizing conducting polymers suggest their potential as materials to form the basis for novel approaches to in vivo neural therapeutics.

摘要

生物系统与电子元件之间的无缝集成对于实现生化-电记录和治疗方法的双重结合以理解和对抗神经紊乱至关重要。采用由共轭聚合物组成的生物电子系统,这些聚合物具有同时传输电子和离子电荷的固有能力,为这种集成提供了可能性。特别是,将最近在植物和简单生物系统中展示的酶聚合导电丝转化为哺乳动物模型,对于开发能够监测和调节神经信号的下一代设备具有特别的意义。作为实现这一目标的第一步,在 Au 表面上支撑的合成脂质双层上演示了两种噻吩基单体的酶介导聚合。原位聚合的导电膜的微量天平研究提供了对其与模拟细胞膜的脂质双层模型相互作用的深入了解。此外,这些自组织导电聚合物的电和粘弹性特性表明它们有潜力成为用于体内神经治疗的新型材料的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b2/10269430/7330566ed73e/la3c00654_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验