School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, China.
Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202305184. doi: 10.1002/anie.202305184. Epub 2023 May 19.
Hydroxylamine (NH OH), a vital industrial feedstock, is presently synthesized under harsh conditions with serious environmental and energy concerns. Electrocatalytic nitric oxide (NO) reduction is attractive for the production of hydroxylamine under ambient conditions. However, hydroxylamine selectivity is limited by the competitive reaction of ammonia production. Herein, we regulate the adsorption configuration of NO by adjusting the atomic structure of catalysts to control the product selectivity. Co single-atom catalysts show state-of-the-art NH OH selectivity from NO electroreduction under neutral conditions (FE : 81.3 %), while Co nanoparticles are inclined to generate ammonia (FE : 92.3 %). A series of in situ characterizations and theoretical simulations unveil that linear adsorption of NO on isolated Co sites enables hydroxylamine formation and bridge adsorption of NO on adjacent Co sites induces the production of ammonia.
羟胺(NH OH)是一种重要的工业原料,目前在严峻的条件下合成,存在严重的环境和能源问题。电催化一氧化氮(NO)还原反应在环境条件下具有吸引力,可以用于生产羟胺。然而,氨的生成竞争反应限制了羟胺的选择性。在此,我们通过调节催化剂的原子结构来调节 NO 的吸附构型,以控制产物的选择性。在中性条件下,Co 单原子催化剂(FE :81.3%)从电还原 NO 中表现出了最先进的羟胺选择性,而 Co 纳米颗粒则倾向于生成氨(FE :92.3%)。一系列的原位表征和理论模拟揭示了 NO 在孤立 Co 位点上的线性吸附有利于羟胺的形成,而 NO 在相邻 Co 位点上的桥接吸附则诱导了氨的生成。