Suppr超能文献

用于预测化妆品化合物皮肤致敏潜力的机器学习模型的开发。

Development of machine learning models for the prediction of the skin sensitization potential of cosmetic compounds.

作者信息

Qiao Wu, Xie Tong, Lu Jing, Jia Tinghan

机构信息

Pigeon Manufacturing (Shanghai) Co., Ltd., Shanghai, China.

出版信息

PeerJ. 2024 Dec 13;12:e18672. doi: 10.7717/peerj.18672. eCollection 2024.

Abstract

BACKGROUND

To enhance the accuracy of allergen detection in cosmetic compounds, we developed a co-culture system that combines HaCaT keratinocytes (transfected with a luciferase plasmid driven by the AKR1C2 promoter) and THP-1 cells for machine learning applications.

METHODS

Following chemical exposure, cell cytotoxicity was assessed using CCK-8 to determine appropriate stimulation concentrations. RNA-Seq was subsequently employed to analyze THP-1 cells, followed by differential expression gene (DEG) analysis and weighted gene co-expression net-work analysis (WGCNA). Using two data preprocessing methods and three feature extraction techniques, we constructed and validated models with eight machine learning algorithms.

RESULTS

Our results demonstrated the effectiveness of this integrated approach. The best performing models were random forest (RF) and voom-based diagonal quadratic discriminant analysis (voomDQDA), both achieving 100% accuracy. Support vector machine (SVM) and voom based nearest shrunken centroids (voomNSC) showed excellent performance with 96.7% test accuracy, followed by voom-based diagonal linear discriminant analysis (voomDLDA) at 95.2%. Nearest shrunken centroids (NSC), Poisson linear discriminant analysis (PLDA) and negative binomial linear discriminant analysis (NBLDA) achieved 90.5% and 90.2% accuracy, respectively. K-nearest neighbors (KNN) showed the lowest accuracy at 85.7%.

CONCLUSION

This study highlights the potential of integrating co-culture systems, RNA-Seq, and machine learning to develop more accurate and comprehensive methods for skin sensitization testing. Our findings contribute to the advancement of cosmetic safety assessments, potentially reducing the reliance on animal testing.

摘要

背景

为提高化妆品成分中过敏原检测的准确性,我们开发了一种共培养系统,该系统将HaCaT角质形成细胞(用由AKR1C2启动子驱动的荧光素酶质粒转染)和THP-1细胞结合起来用于机器学习应用。

方法

化学物质暴露后,使用CCK-8评估细胞毒性以确定合适的刺激浓度。随后采用RNA测序分析THP-1细胞,接着进行差异表达基因(DEG)分析和加权基因共表达网络分析(WGCNA)。使用两种数据预处理方法和三种特征提取技术,我们构建并验证了包含八种机器学习算法的模型。

结果

我们的结果证明了这种综合方法的有效性。表现最佳的模型是随机森林(RF)和基于voom的对角二次判别分析(voomDQDA),两者的准确率均达到100%。支持向量机(SVM)和基于voom的最近收缩质心(voomNSC)表现出色,测试准确率为96.7%,其次是基于voom的对角线性判别分析(voomDLDA),准确率为95.2%。最近收缩质心(NSC)、泊松线性判别分析(PLDA)和负二项式线性判别分析(NBLDA)的准确率分别达到90.5%和90.2%。K近邻(KNN)的准确率最低,为85.7%。

结论

本研究突出了整合共培养系统、RNA测序和机器学习以开发更准确、更全面的皮肤致敏测试方法的潜力。我们的研究结果有助于推进化妆品安全性评估,有可能减少对动物试验的依赖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3c/11648681/c2c0159c8431/peerj-12-18672-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验