Suppr超能文献

基于端到端Res-Unet的光声成像重建算法

End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging.

作者信息

Feng Jinchao, Deng Jianguang, Li Zhe, Sun Zhonghua, Dou Huijing, Jia Kebin

机构信息

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

Beijing Laboratory of Advanced Information Networks, Beijing 100124, China.

出版信息

Biomed Opt Express. 2020 Aug 27;11(9):5321-5340. doi: 10.1364/BOE.396598. eCollection 2020 Sep 1.

Abstract

Recently, deep neural networks have attracted great attention in photoacoustic imaging (PAI). In PAI, reconstructing the initial pressure distribution from acquired photoacoustic (PA) signals is a typically inverse problem. In this paper, an end-to-end Unet with residual blocks (Res-Unet) is designed and trained to solve the inverse problem in PAI. The performance of the proposed algorithm is explored and analyzed by comparing a recent model-resolution-based regularization algorithm (MRR) with numerical and physical phantom experiments. The improvement obtained in the reconstructed images was more than 95% in pearson correlation and 39% in peak signal-to-noise ratio in comparison to the MRR. The Res-Unet also achieved superior performance over the state-of-the-art Unet++ architecture by more than 18% in PSNR in simulation experiments.

摘要

最近,深度神经网络在光声成像(PAI)中引起了极大关注。在光声成像中,从采集到的光声(PA)信号重建初始压力分布是一个典型的逆问题。本文设计并训练了一种带有残差块的端到端U型网络(Res-Unet)来解决光声成像中的逆问题。通过将一种基于模型分辨率的正则化算法(MRR)与数值和物理体模实验进行比较,对所提算法的性能进行了探索和分析。与MRR相比,重建图像在皮尔逊相关系数方面的提升超过95%,在峰值信噪比方面的提升为39%。在模拟实验中,Res-Unet在峰值信噪比方面也比当前最先进的Unet++架构有超过18%的性能优势。

相似文献

1
End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging.基于端到端Res-Unet的光声成像重建算法
Biomed Opt Express. 2020 Aug 27;11(9):5321-5340. doi: 10.1364/BOE.396598. eCollection 2020 Sep 1.
5
Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.二维稀疏光声断层成像伪影去除的全密集 UNet。
IEEE J Biomed Health Inform. 2020 Feb;24(2):568-576. doi: 10.1109/JBHI.2019.2912935. Epub 2019 Apr 23.

引用本文的文献

5
U-Net enhanced real-time LED-based photoacoustic imaging.基于 LED 的 U-Net 增强型实时光声成像。
J Biophotonics. 2024 Jun;17(6):e202300465. doi: 10.1002/jbio.202300465. Epub 2024 Apr 15.

本文引用的文献

1
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
2
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.深度学习在实时光声系统中的图像重建。
IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.
5
Deep learning for photoacoustic tomography from sparse data.基于稀疏数据的光声层析成像深度学习方法
Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.
6
Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.二维稀疏光声断层成像伪影去除的全密集 UNet。
IEEE J Biomed Health Inform. 2020 Feb;24(2):568-576. doi: 10.1109/JBHI.2019.2912935. Epub 2019 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验