Suppr超能文献

稀疏视图光声层析成像中图像重建的学习正则化

Learned regularization for image reconstruction in sparse-view photoacoustic tomography.

作者信息

Wang Tong, He Menghui, Shen Kang, Liu Wen, Tian Chao

机构信息

School of Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China.

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China.

出版信息

Biomed Opt Express. 2022 Oct 11;13(11):5721-5737. doi: 10.1364/BOE.469460. eCollection 2022 Nov 1.

Abstract

Constrained data acquisitions, such as sparse view measurements, are sometimes used in photoacoustic computed tomography (PACT) to accelerate data acquisition. However, it is challenging to reconstruct high-quality images under such scenarios. Iterative image reconstruction with regularization is a typical choice to solve this problem but it suffers from image artifacts. In this paper, we present a learned regularization method to suppress image artifacts in model-based iterative reconstruction in sparse view PACT. A lightweight dual-path network is designed to learn regularization features from both the data and the image domains. The network is trained and tested on both simulation and datasets and compared with other methods such as Tikhonov regularization, total variation regularization, and a U-Net based post-processing approach. Results show that although the learned regularization network possesses a size of only 0.15% of a U-Net, it outperforms other methods and converges after as few as five iterations, which takes less than one-third of the time of conventional methods. Moreover, the proposed reconstruction method incorporates the physical model of photoacoustic imaging and explores structural information from training datasets. The integration of deep learning with a physical model can potentially achieve improved imaging performance in practice.

摘要

受限的数据采集,如稀疏视图测量,有时用于光声计算机断层扫描(PACT)以加速数据采集。然而,在这种情况下重建高质量图像具有挑战性。带正则化的迭代图像重建是解决此问题的典型选择,但它会产生图像伪影。在本文中,我们提出一种学习正则化方法,以抑制稀疏视图PACT中基于模型的迭代重建中的图像伪影。设计了一个轻量级双路径网络,从数据域和图像域学习正则化特征。该网络在模拟和数据集上进行训练和测试,并与其他方法进行比较,如蒂霍诺夫正则化、总变差正则化和基于U-Net的后处理方法。结果表明,尽管学习正则化网络的规模仅为U-Net的0.15%,但它优于其他方法,并且在仅五次迭代后就收敛,这花费的时间不到传统方法的三分之一。此外,所提出的重建方法纳入了光声成像的物理模型,并从训练数据集中探索结构信息。深度学习与物理模型的集成在实践中可能实现改进的成像性能。

相似文献

引用本文的文献

本文引用的文献

2
End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging.基于端到端Res-Unet的光声成像重建算法
Biomed Opt Express. 2020 Aug 27;11(9):5321-5340. doi: 10.1364/BOE.396598. eCollection 2020 Sep 1.
6
Model-Based Reconstruction of Large Three-Dimensional Optoacoustic Datasets.基于模型的大三维光声数据集重建。
IEEE Trans Med Imaging. 2020 Sep;39(9):2931-2940. doi: 10.1109/TMI.2020.2981835. Epub 2020 Mar 18.
9
A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation.基于部分学习的光声联合重建与分割算法。
IEEE Trans Med Imaging. 2020 Jan;39(1):129-139. doi: 10.1109/TMI.2019.2922026. Epub 2019 Jun 10.
10
Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.二维稀疏光声断层成像伪影去除的全密集 UNet。
IEEE J Biomed Health Inform. 2020 Feb;24(2):568-576. doi: 10.1109/JBHI.2019.2912935. Epub 2019 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验