Kolenik Tine, Schiepek Günter, Gams Matjaž
Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia.
Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.
Neuropsychiatr Dis Treat. 2024 Dec 12;20:2465-2498. doi: 10.2147/NDT.S417695. eCollection 2024.
The importance of computational psychotherapy is increasing due to the record high prevalence of mental health issues worldwide. Despite advancements, current computational psychotherapy systems lack advanced prediction and behavior change mechanisms using conversational agents.
This work presents a computational psychotherapy system for mental health prediction and behavior change using a conversational agent. It makes two major contributions. First, we introduce a novel, golden standard dataset, comprising panel data with 1495 instances of quantitative stress, anxiety, and depression (SAD) symptom scores from diagnostic-level questionnaires and qualitative daily diary entries. Second, we present the computational psychotherapy system itself.
We hypothesize that simulating a theory of mind - the human cognitive ability to understand others - in a conversational agent enhances its effectiveness in relieving mental health issues.
The system simulates theory of mind with a cognitive architecture comprising an ensemble of computational models, using cognitive modelling and machine learning models trained on the novel dataset, and novel ontologies. The system was evaluated through a computational experiment on mental health phenomena prediction from text, and an empirical interventional study on relieving mental health issues in 42 participants.
The system outperformed state-of-the-art systems in terms of the number of detected categories and detection accuracy (highest accuracy: 91.41% using k-nearest neighbors (kNN); highest accuracy of other systems: 84% using long-short term memory network (LSTM)). The highest accuracy for 7-day forecasting was 87.68%, whereas the other systems were not able to forecast trends. In the study, the system outperformed Woebot, the current state-of-the-art, in reducing stress ( = 0.004) and anxiety ( = 0.008) levels.
The confirmation of our hypothesis indicates that incorporating theory of mind simulation in conversational agents significantly enhances their efficacy in computational psychotherapy, offering a promising advancement for mental health interventions and support compared to current state-of-the-art systems.
由于全球心理健康问题的患病率创历史新高,计算心理治疗的重要性日益增加。尽管取得了进展,但当前的计算心理治疗系统缺乏使用对话代理的先进预测和行为改变机制。
这项工作提出了一种使用对话代理进行心理健康预测和行为改变的计算心理治疗系统。它做出了两项主要贡献。首先,我们引入了一个新颖的黄金标准数据集,该数据集包含来自诊断级问卷的1495个定量压力、焦虑和抑郁(SAD)症状评分实例的面板数据以及定性的日常日记条目。其次,我们展示了计算心理治疗系统本身。
我们假设在对话代理中模拟心理理论——人类理解他人的认知能力——可提高其缓解心理健康问题的有效性。
该系统使用认知架构模拟心理理论,该架构包括一组计算模型,使用在新数据集上训练的认知建模和机器学习模型以及新颖的本体。通过对文本中的心理健康现象预测进行计算实验以及对42名参与者缓解心理健康问题的实证干预研究对该系统进行了评估。
在检测到的类别数量和检测准确率方面,该系统优于现有系统(最高准确率:使用k近邻(kNN)为91.41%;其他系统的最高准确率:使用长短期记忆网络(LSTM)为84%)。7天预测的最高准确率为87.68%,而其他系统无法预测趋势。在该研究中,该系统在减轻压力(P = 0.004)和焦虑(P = 0.008)水平方面优于当前最先进的Woebot。
我们假设的证实表明,在对话代理中纳入心理理论模拟可显著提高其在计算心理治疗中的功效,与当前最先进的系统相比,为心理健康干预和支持提供了有希望的进展。