Yang Hui, Huang Sirui, Zhu Xinwei, Chen Yasi, Xu Chunming, Li Ruohan, Bu Pan, Jiang Yufan, Li Changwei, Yang Jie, Chen Zhenyi, Peng Weijie, Liu Lin
School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China.
Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China.
Mater Today Bio. 2024 Nov 27;29:101370. doi: 10.1016/j.mtbio.2024.101370. eCollection 2024 Dec.
Critical-sized bone defects present a formidable challenge in tissue engineering, necessitating innovative approaches that integrate osteogenesis and angiogenesis for effective repair. Inspired by the hierarchical porous structure of natural bone, this study introduces a novel method for the scalable production of ultra-long, copper-doped hydroxyapatite (Cu-HAp) fibers, utilizing the rapid gelation properties of guar gum (GG) under controlled conditions. These fibers serve as foundational units to fabricate three-dimensional porous scaffolds with a biomimetic hierarchical architecture. The scaffolds exhibit a broad pore size distribution (1-500 μm) and abundant nanoporous features, mimicking the native bone extracellular matrix. Physicochemical characterization and assays demonstrated that the copper doping significantly enhanced osteogenic and angiogenic activities, with optimized concentrations (0.8 % and 1.2 % Cu) facilitating the upregulation of osteogenesis-related genes and proteins, as well as promoting endothelial cell proliferation. studies further confirmed the scaffolds' efficacy, with the 1.2Cu-HAp group showing a remarkable increase in bone regeneration (bone volume/total volume ratio: 35.7 ± 1.87 %) within the defect site. This research offers a promising strategy for the rapid fabrication of multifunctional scaffolds that not only support bone tissue repair but also actively accelerate the healing process through enhanced vascularization.
临界尺寸的骨缺损在组织工程中构成了巨大挑战,需要采用将成骨作用和血管生成相结合的创新方法来实现有效修复。受天然骨分层多孔结构的启发,本研究引入了一种新方法,利用瓜尔胶(GG)在可控条件下的快速凝胶化特性,可扩展地生产超长的铜掺杂羟基磷灰石(Cu-HAp)纤维。这些纤维作为基础单元,用于制造具有仿生分层结构的三维多孔支架。该支架具有宽泛的孔径分布(1-500μm)和丰富的纳米孔特征,模仿了天然骨细胞外基质。物理化学表征和分析表明,铜掺杂显著增强了成骨和血管生成活性,优化浓度(0.8%和1.2% Cu)促进了成骨相关基因和蛋白质的上调,并促进了内皮细胞增殖。进一步的研究证实了该支架的有效性,1.2Cu-HAp组在缺损部位的骨再生显著增加(骨体积/总体积比:35.7±1.87%)。本研究为快速制造多功能支架提供了一种有前景的策略,该支架不仅支持骨组织修复,还通过增强血管化积极加速愈合过程。