Suppr超能文献

放疗后脑膜瘤的影像组学和影像学特征的变化。

Changes in radiomic and radiologic features in meningiomas after radiation therapy.

机构信息

Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, South Korea.

Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, 14068, Gyeonggi-do, Republic of Korea.

出版信息

BMC Med Imaging. 2023 Oct 19;23(1):164. doi: 10.1186/s12880-023-01116-0.

Abstract

OBJECTIVES

This study evaluated the radiologic and radiomic features extracted from magnetic resonance imaging (MRI) in meningioma after radiation therapy and investigated the impact of radiation therapy in treating meningioma based on routine brain MRI.

METHODS

Observation (n = 100) and radiation therapy (n = 62) patients with meningioma who underwent MRI were randomly divided (7:3 ratio) into training (n = 118) and validation (n = 44) groups. Radiologic findings were analyzed. Radiomic features (filter types: original, square, logarithm, exponential, wavelet; feature types: first order, texture, shape) were extracted from the MRI. The most significant radiomic features were selected and applied to quantify the imaging phenotype using random forest machine learning algorithms. Area under the curve (AUC), sensitivity, and specificity for predicting both the training and validation sets were computed with multiple-hypothesis correction.

RESULTS

The radiologic difference in the maximum area and diameter of meningiomas between two groups was statistically significant. The tumor decreased in the treatment group. A total of 241 series and 1691 radiomic features were extracted from the training set. In univariate analysis, 24 radiomic features were significantly different (P < 0.05) between both groups. Best subsets were one original, three first-order, and six wavelet-based features, with an AUC of 0.87, showing significant differences (P < 0.05) in multivariate analysis. When applying the model, AUC was 0.76 and 0.79 for the training and validation set, respectively.

CONCLUSION

In meningioma cases, better size reduction can be expected after radiation treatment. The radiomic model using MRI showed significant changes in radiomic features after radiation treatment.

摘要

目的

本研究评估了脑膜瘤放射治疗后磁共振成像(MRI)中提取的影像学和放射组学特征,并基于常规脑部 MRI 探讨了放射治疗对脑膜瘤的影响。

方法

将接受 MRI 检查的脑膜瘤观察(n=100)和放射治疗(n=62)患者随机分为训练(n=118)和验证(n=44)两组(7:3 比例)。分析影像学结果。从 MRI 中提取放射组学特征(滤波器类型:原始、平方、对数、指数、小波;特征类型:一阶、纹理、形状)。选择最显著的放射组学特征,并应用随机森林机器学习算法对成像表型进行量化。使用多重假设校正计算训练和验证集的曲线下面积(AUC)、敏感度和特异性。

结果

两组脑膜瘤最大面积和直径的影像学差异具有统计学意义。治疗组肿瘤缩小。从训练组中提取了 241 个序列和 1691 个放射组学特征。在单因素分析中,两组间有 24 个放射组学特征存在显著差异(P<0.05)。最佳子集为一个原始、三个一阶和六个基于小波的特征,AUC 为 0.87,在多因素分析中差异具有统计学意义(P<0.05)。应用模型时,训练集和验证集的 AUC 分别为 0.76 和 0.79。

结论

在脑膜瘤病例中,放射治疗后可预期肿瘤体积缩小。基于 MRI 的放射组学模型显示放射治疗后放射组学特征发生了显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcc/10588231/4e6390c6373e/12880_2023_1116_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验