Niroomand Behnaz, Mohammadzadeh Ibrahim, Hajikarimloo Bardia, Habibi Mohammad Amin, Mohammadzadeh Shahin, Bahri Amir Mohammad, Bagheri Mohammad Hassan, Albakr Abdulrahman, Karmur Brij S, Borghei-Razavi Hamid
Skull Base Research Center,, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Skull-base Neurosurgery from Shahid Beheshti Medical University, Tehran, Iran.
Neurosurg Rev. 2025 Aug 27;48(1):623. doi: 10.1007/s10143-025-03744-2.
Predicting recurrence in meningioma patients is vital for improving long-term outcomes and tailoring personalized treatment strategies. While traditional diagnostic methods have advanced, accurately forecasting recurrence remains a persistent and critical challenge. This study explores the cutting-edge application of artificial intelligence (AI)-based models, which seamlessly integrate clinical, radiological, and pathological data, offering a transformative approach to enhancing the reliability and precision of recurrence prediction.
Eligible studies were identified through a comprehensive search of the Web of Science, Scopus, PubMed, and Embase databases. Extracted and synthesized metrics for analysis included accuracy, sensitivity, specificity, precision, F1 score, and area under the curve (AUC). Out of 2,971 studies screened, six met the inclusion criteria for systematic review, and three were included in the meta-analysis.
The pooled sensitivity and specificity of AI models were 0.86 [95% CI: 0.78-0.92] and 0.86 [95% CI: 0.81-0.90], respectively. The positive diagnostic likelihood ratio (DLR) was 6.33 [95% CI: 4.42-9.08], and the negative DLR was 0.16 [95% CI: 0.09-0.27]. The diagnostic odds ratio (DOR) was estimated at 40.11 [95% CI: 19.30-83.37], with a diagnostic score of 3.69 [95% CI: 2.96-4.42] and a pooled area under the curve (AUC) of 0.93 [95% CI: 0.90-0.95]. Subgroup analysis showed comparable sensitivity (RF: 0.88; LR: 0.84) and specificity (RF: 0.84; LR: 0.84) with no significant heterogeneity (I² = 0%).
These findings highlight the potential of AI-based models to predict meningioma recurrence, offer superior diagnostic accuracy, and aid clinical decision-making. Integrating clinical, radiological, and pathological data through AI-driven models demonstrates substantial promise in enhancing the reliability and efficiency of recurrence forecasting.
预测脑膜瘤患者的复发情况对于改善长期预后和制定个性化治疗策略至关重要。虽然传统诊断方法已经取得进展,但准确预测复发仍然是一个持续存在的关键挑战。本研究探索了基于人工智能(AI)模型的前沿应用,该模型无缝整合了临床、放射学和病理学数据,为提高复发预测的可靠性和准确性提供了一种变革性方法。
通过全面检索科学网、Scopus、PubMed和Embase数据库来确定符合条件的研究。提取并综合分析的指标包括准确性、敏感性、特异性、精确度、F1分数和曲线下面积(AUC)。在筛选的2971项研究中,有6项符合系统评价的纳入标准,3项纳入荟萃分析。
AI模型的合并敏感性和特异性分别为0.86[95%CI:0.78-0.92]和0.86[95%CI:0.81-0.90]。阳性诊断似然比(DLR)为6.33[95%CI:4.42-9.08],阴性DLR为0.16[95%CI:0.09-0.27]。诊断比值比(DOR)估计为40.11[95%CI:19.30-83.37],诊断评分为3.69[95%CI:2.96-4.42],合并曲线下面积(AUC)为0.93[95%CI:0.90-0.95]。亚组分析显示敏感性(随机森林:0.88;逻辑回归:0.84)和特异性(随机森林:0.84;逻辑回归:0.84)相当,无显著异质性(I² = 0%)。
这些发现凸显了基于AI的模型在预测脑膜瘤复发、提供卓越诊断准确性以及辅助临床决策方面的潜力。通过AI驱动的模型整合临床、放射学和病理学数据在提高复发预测的可靠性和效率方面显示出巨大前景。