Suppr超能文献

梯度提升算法用于优良玉米杂交种郑单958的产量预测

Gradient boosting for yield prediction of elite maize hybrid ZhengDan 958.

作者信息

Ennaji Oumnia, Baha Sfia, Vergutz Leonardus, El Allali Achraf

机构信息

College of Computing, University Mohammed VI Polytechnic, Benguerir, Morocco.

College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Benguerir, Morocco.

出版信息

PLoS One. 2024 Dec 17;19(12):e0315493. doi: 10.1371/journal.pone.0315493. eCollection 2024.

Abstract

Understanding accurate methods for predicting yields in complex agricultural systems is critical for effective nutrient management and crop growth. Machine learning has proven to be an important tool in this context. Numerous studies have investigated its potential for predicting yields under different conditions. Among these algorithms, Random Forest (RF) has gained prominence due to its ability to manage large data sets with high dimensions, as well as its ability to uncover complicated non-linear relationships and interactions between variables. RF is particularly suitable for scenarios with categorical variables and missing data. Given the complex web of management practices and their nonlinear effects on yield prediction, it is important to investigate new machine learning algorithms. In this context, our study focused on the evaluation of gradient boosting methods, particularly Extreme Gradient Boosting (XGB) and Gradient Boosting Regressor (GBR), as potential candidates for yield estimation of the maize hybrid Zhengdan 958. Our aim was not only to evaluate and compare these algorithms with existing approaches, but also to comprehensively analyze the resulting model uncertainties. Our approach includes comparing multiple machine learning algorithms, developing and selecting suitable features, fine-tuning the models by training and adjusting the hyperparameters, and visualizing the results. Using a recent dataset of over 1700 maize yield data pairs, our evaluation included a spectrum of algorithms. Our results show robust prediction accuracy for all algorithms. In particular, the predictions of XGB (RMSE = 0.37, R2 = 0.87 and MAE = 0.26) and GBR(RMSE = 0.39, R2 = 0.86 and MAE = 0.27), emphasized the central role of weather characteristics and confirmed the high dependence of crop yield prediction on environmental attributes. Utilizing the capabilities of gradient boosting for yield prediction holds immense potential and is consistent with the promise of this method to serve as a catalyst for further investigation in this evolving field.

摘要

了解复杂农业系统中预测产量的准确方法对于有效的养分管理和作物生长至关重要。在这种情况下,机器学习已被证明是一种重要工具。众多研究调查了其在不同条件下预测产量的潜力。在这些算法中,随机森林(RF)因其能够处理高维大数据集以及揭示变量之间复杂的非线性关系和相互作用的能力而备受关注。RF特别适用于具有分类变量和缺失数据的场景。鉴于管理实践的复杂网络及其对产量预测的非线性影响,研究新的机器学习算法很重要。在这种背景下,我们的研究重点是评估梯度提升方法,特别是极端梯度提升(XGB)和梯度提升回归器(GBR),作为玉米杂交种郑单958产量估计的潜在候选方法。我们的目的不仅是将这些算法与现有方法进行评估和比较,还全面分析所得模型的不确定性。我们的方法包括比较多种机器学习算法、开发和选择合适的特征、通过训练和调整超参数对模型进行微调以及可视化结果。使用最近的一个包含1700多个玉米产量数据对的数据集,我们的评估涵盖了一系列算法。我们的结果表明所有算法都具有强大的预测准确性。特别是,XGB(均方根误差=0.37,决定系数=0.87,平均绝对误差=0.26)和GBR(均方根误差=0.39,决定系数=0.86,平均绝对误差=0.27)的预测强调了天气特征的核心作用,并证实了作物产量预测对环境属性的高度依赖性。利用梯度提升进行产量预测具有巨大潜力,并且与该方法有望成为这个不断发展领域进一步研究的催化剂相一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/101c/11651618/f3746f1afe36/pone.0315493.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验