Shusharina Nadya, Kaza Evangelia, Lam Miranda B, Maier Stephan E
Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America.
Harvard Medical School, Boston, MA 02115, United States of America.
Phys Med Biol. 2024 Dec 27;70(1). doi: 10.1088/1361-6560/ada0a2.
Diffusion-weighted MRI (DW-MRI) is used to quantitatively characterize the microscopic structure of muscle through anisotropic water diffusion in soft tissue. Applications such as tumor propagation modeling require precise detection of muscle fiber orientation. That is, the direction along the fibers that coincides with the direction of the principal eigenvector of the diffusion tensor reconstructed from DW-MRI data. For clinical applications, the quality of image data is determined by the signal-to-noise ratio (SNR) that must be achieved within the appropriate scan time. The acquisition protocol must therefore be optimized. This implies the need for SNR criteria that match the data quality of the application.Muscles with known structural heterogeneity, e.g. bipennate muscles such as the rectus femoris in the thigh, provide a natural quality benchmark to determine accuracy of inferred fiber orientation at different scan parameters. In this study, we analyze DW-MR images of the thigh of a healthy volunteer at different SNRs and use PCA to identify subsets of voxels with different directions of diffusion tensor eigenvectors corresponding to different pennate angles. We propose to use the separation index of spatial co-localization of the clustered eigenvectors as a quality metric for fiber orientation detection.The clustering in the PCA component coordinates can be translated to the separation of the two compartments of the bipennate muscle on either side of the central tendon according to the pennate angle. The separation index reflects the degree of the separation and is a function of SNR.Because the separation index allows joint estimation of spatial and directional noise in DW-MRI as a single parameter, it will allow future quantitative optimization of DW-MRI soft tissue protocols.
扩散加权磁共振成像(DW-MRI)用于通过软组织中各向异性水扩散来定量表征肌肉的微观结构。诸如肿瘤扩散建模等应用需要精确检测肌纤维方向。也就是说,沿着与从DW-MRI数据重建的扩散张量主特征向量方向一致的纤维方向。对于临床应用,图像数据的质量由在适当扫描时间内必须达到的信噪比(SNR)决定。因此,采集协议必须进行优化。这意味着需要与应用的数据质量相匹配的SNR标准。具有已知结构异质性的肌肉,例如大腿中的股直肌等羽状肌,为确定不同扫描参数下推断纤维方向的准确性提供了天然的质量基准。在本研究中,我们分析了一名健康志愿者大腿在不同SNR下的DW-MR图像,并使用主成分分析(PCA)来识别与不同羽状角对应的具有不同扩散张量特征向量方向的体素子集。我们建议使用聚类特征向量的空间共定位分离指数作为纤维方向检测的质量指标。PCA分量坐标中的聚类可以根据羽状角转换为羽状肌中央腱两侧两个隔室的分离。分离指数反映了分离程度,并且是SNR的函数。由于分离指数允许将DW-MRI中的空间和方向噪声作为单个参数进行联合估计,它将允许未来对DW-MRI软组织协议进行定量优化。