Suppr超能文献

时间接触模式及其对预测超级传播者和有针对性的疫情防控规划的影响。

Temporal contact patterns and the implications for predicting superspreaders and planning of targeted outbreak control.

作者信息

Pung Rachael, Firth Josh A, Russell Timothy W, Rogers Tim, Lee Vernon J, Kucharski Adam J

机构信息

Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.

Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

J R Soc Interface. 2024 Dec;21(221):20240358. doi: 10.1098/rsif.2024.0358. Epub 2024 Dec 18.

Abstract

Directly transmitted infectious diseases spread through social contacts that change over time, but outbreak models typically make simplifying assumptions about network structure and dynamics. To assess how common assumptions relate to real-world interactions, we analysed 11 networks from five settings and developed metrics, capturing crucial epidemiological features of these networks. We developed a novel metric, the 'retention index', to characterize the distribution of retained contacts over consecutive time steps relative to fully static and dynamic networks. In workplaces and schools, contacts in the same department formed most of the retained contacts. In contrast, no clear contact type dominated the retained contacts in hospitals, thus reducing overall risk of disease introduction would be more effective than control targeted at departments. We estimated the contacts repetition over multiple days and showed that simple resource planning models overestimate the number of unique contacts by 20%-70%. We distinguished the difference between 'superspreader' and infectious individuals driving 'superspreading events' by measuring how often the individual represents the top 80% of contacts in the time steps over the study duration. We showed an inherent difficulty in identifying 'superspreaders' reliably: less than 20% of the individuals in most settings were highly connected for multiple time steps.

摘要

直接传播的传染病通过随时间变化的社会接触传播,但疫情爆发模型通常对网络结构和动态做出简化假设。为了评估常见假设与现实世界互动的关联,我们分析了来自五种环境的11个网络,并开发了指标,以捕捉这些网络的关键流行病学特征。我们开发了一种新的指标,即“留存指数”,以相对于完全静态和动态网络来表征连续时间步长内留存接触的分布情况。在工作场所和学校,同一部门的接触构成了大部分留存接触。相比之下,在医院中没有明确的接触类型主导留存接触,因此降低总体疾病引入风险比针对部门的控制措施更有效。我们估计了多天内的接触重复情况,并表明简单的资源规划模型将独特接触的数量高估了20% - 70%。通过测量个体在研究持续时间内的时间步长中占接触前80%的频率,我们区分了“超级传播者”与引发“超级传播事件”的感染个体之间的差异。我们表明可靠识别“超级传播者”存在内在困难:在大多数环境中,不到20%的个体在多个时间步长内具有高度连接性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aa3/11651907/62ccc7c531af/rsif.2024.0358.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验