Suppr超能文献

一种基于多通道CT影像组学的多模态深度学习模型用于预测膀胱癌的病理分级。

A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer.

作者信息

Zhao Ting, He Jian, Zhang Licui, Li Hongyang, Duan Qinghong

机构信息

Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China.

College of Medical Imaging, Guizhou Medical University, Guizhou, China.

出版信息

Abdom Radiol (NY). 2024 Dec 18. doi: 10.1007/s00261-024-04748-0.

Abstract

OBJECTIVE

To construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images.

METHODS

A retrospective analysis was conducted involving 201 bladder cancer patients with definite pathological grading results after surgical excision at the organization between January 2019 and June 2023. The cohort was classified into a test set of 81 cases and a training set of 120 cases. Hand-crafted radiomics (HCR) and features derived from deep-learning (DL) were obtained from computed tomography (CT) images. The research builds a prediction model using 12 machine-learning classifiers, which integrate HCR, DL features, and clinical data. Model performance was estimated utilizing decision-curve analysis (DCA), the area under the curve (AUC), and calibration curves.

RESULTS

Among the classifiers tested, the logistic regression model that combined DL and HCR characteristics demonstrated the finest performance. The AUC values were 0.912 (training set) and 0.777 (test set). The AUC values of clinical model achieved 0.850 (training set) and 0.804 (test set). The AUC values of the combined model were 0.933 (training set) and 0.824 (test set), outperforming both the clinical and HCR-only models.

CONCLUSION

The CT-based combined model demonstrated considerable diagnostic capability in differentiating high-grade from low-grade bladder cancer, serving as a valuable noninvasive instrument for preoperative pathological evaluation.

摘要

目的

构建一种利用深度学习影像组学和临床风险因素的预测模型,根据计算机断层扫描(CT)图像评估膀胱癌的术前组织病理学分级。

方法

对2019年1月至2023年6月期间在该机构接受手术切除且有明确病理分级结果的201例膀胱癌患者进行回顾性分析。该队列被分为81例的测试集和120例的训练集。从计算机断层扫描(CT)图像中获取手工制作的影像组学(HCR)和深度学习(DL)衍生的特征。本研究使用12种机器学习分类器构建预测模型,这些分类器整合了HCR、DL特征和临床数据。利用决策曲线分析(DCA)、曲线下面积(AUC)和校准曲线评估模型性能。

结果

在测试的分类器中,结合DL和HCR特征的逻辑回归模型表现最佳。训练集的AUC值为0.912,测试集的AUC值为0.777。临床模型的AUC值在训练集为0.850,测试集为0.804。联合模型的AUC值在训练集为0.933,测试集为0.824,优于临床模型和仅使用HCR的模型。

结论

基于CT的联合模型在区分高级别和低级别膀胱癌方面显示出相当的诊断能力,是术前病理评估的一种有价值的非侵入性工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验