Suppr超能文献

使用印楝叶提取物对掺铁 WS 进行环保绿色合成:解锁大层间距以提高电容和实现快速离子传输。

Eco-friendly green synthesis of Fe-doped WS using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport.

作者信息

Khan M I, Mujtaba Ali, Nadeem M Arslan, Majeed Amira, Ezzine Safa, Alshahrani Dhafer O

机构信息

Department of Physics, The University of Lahore 53700 Pakistan

Department of Chemistry, College of Science, King Khalid University P.O. Box 9004 61413 Abha Saudi Arabia.

出版信息

RSC Adv. 2024 Dec 17;14(53):39727-39739. doi: 10.1039/d4ra07012g. eCollection 2024 Dec 10.

Abstract

Iron-doped tungsten disulfide (Fe-WS) nanoparticles were synthesized a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The -spacing is increased by Fe doping (6.05-6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W-S and S-S bond vibrations, crucial for material integrity. The Brunauer-Emmett-Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS for high-performance energy storage devices.

摘要

采用印楝叶提取物的绿色方法合成了铁掺杂二硫化钨(Fe-WS)纳米颗粒。X射线衍射(XRD)证实了结构变化,形成了六方结构。通过铁掺杂(6.05 - 6.08 Å),晶面间距增加。傅里叶变换红外(FTIR)光谱确定了W-S和S-S键的振动,这对材料完整性至关重要。布鲁诺尔-埃米特-泰勒(BET)分析证实,由于离子扩散增强,表面积和孔径增大。通过扫描电子显微镜(SEM)进行的形态学研究表明,Fe-WS的孔隙率增加,其结构更呈颗粒状且无序,证明了这一点。紫外可见光谱(UV-vis)显示蓝移以及能带隙从2.48 eV增加到2.64 eV,表明光学性能得到改善。亚甲基蓝(MB)染料吸附光谱表明Fe-WS具有多孔性,因此更多的电解质吸附在电极内。循环伏安法(CV)和恒电流充放电(GCD)显示比电容和能量密度增强。电化学阻抗谱(EIS)表明电荷转移电阻显著降低,离子扩散系数大幅增加。这些发现突出了Fe-WS在高性能储能器件方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c05d/11651289/f4e99bb15aff/d4ra07012g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验