Khan M I, Mujtaba Ali, Nadeem M Arslan, Majeed Amira, Ezzine Safa, Alshahrani Dhafer O
Department of Physics, The University of Lahore 53700 Pakistan
Department of Chemistry, College of Science, King Khalid University P.O. Box 9004 61413 Abha Saudi Arabia.
RSC Adv. 2024 Dec 17;14(53):39727-39739. doi: 10.1039/d4ra07012g. eCollection 2024 Dec 10.
Iron-doped tungsten disulfide (Fe-WS) nanoparticles were synthesized a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The -spacing is increased by Fe doping (6.05-6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W-S and S-S bond vibrations, crucial for material integrity. The Brunauer-Emmett-Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS for high-performance energy storage devices.
采用印楝叶提取物的绿色方法合成了铁掺杂二硫化钨(Fe-WS)纳米颗粒。X射线衍射(XRD)证实了结构变化,形成了六方结构。通过铁掺杂(6.05 - 6.08 Å),晶面间距增加。傅里叶变换红外(FTIR)光谱确定了W-S和S-S键的振动,这对材料完整性至关重要。布鲁诺尔-埃米特-泰勒(BET)分析证实,由于离子扩散增强,表面积和孔径增大。通过扫描电子显微镜(SEM)进行的形态学研究表明,Fe-WS的孔隙率增加,其结构更呈颗粒状且无序,证明了这一点。紫外可见光谱(UV-vis)显示蓝移以及能带隙从2.48 eV增加到2.64 eV,表明光学性能得到改善。亚甲基蓝(MB)染料吸附光谱表明Fe-WS具有多孔性,因此更多的电解质吸附在电极内。循环伏安法(CV)和恒电流充放电(GCD)显示比电容和能量密度增强。电化学阻抗谱(EIS)表明电荷转移电阻显著降低,离子扩散系数大幅增加。这些发现突出了Fe-WS在高性能储能器件方面的潜力。