Olmez Sedar, Heppenstall Alison, Ge Jiaqi, Elsenbroich Corinna, Birks Dan
School of Geography, University of Leeds, Leeds, UK.
The Alan Turing Institute, British Library, London, UK.
J Simul. 2024 Jul 9;18(6):921-939. doi: 10.1080/17477778.2024.2375446. eCollection 2024.
Research in modelling housing market dynamics using agent-based models (ABMs) has grown due to the rise of accessible individual-level data. This research involves forecasting house prices, analysing urban regeneration, and the impact of economic shocks. There is a trend towards using machine learning (ML) algorithms to enhance ABM decision-making frameworks. This study investigates exogenous shocks to the UK housing market and integrates reinforcement learning (RL) to adapt housing market dynamics in an ABM. Results show agents can learn real-time trends and make decisions to manage shocks, achieving goals like adjusting the median house price without pre-determined rules. This model is transferable to other housing markets with similar complexities. The RL agent adjusts mortgage interest rates based on market conditions. Importantly, our model shows how a central bank agent learned conservative behaviours in sensitive scenarios, aligning with a 2009 study, demonstrating emergent behavioural patterns.
由于可获取的个人层面数据的增加,使用基于主体的模型(ABM)对住房市场动态进行建模的研究不断发展。这项研究涉及房价预测、城市更新分析以及经济冲击的影响。存在一种使用机器学习(ML)算法来增强ABM决策框架的趋势。本研究调查了英国住房市场的外部冲击,并将强化学习(RL)整合到ABM中以适应住房市场动态。结果表明,主体可以学习实时趋势并做出应对冲击的决策,在没有预先设定规则的情况下实现诸如调整房价中位数等目标。该模型可转移到其他具有类似复杂性的住房市场。RL主体根据市场状况调整抵押贷款利率。重要的是,我们的模型展示了央行主体在敏感情景下如何学习保守行为,这与2009年的一项研究一致,证明了涌现的行为模式。