van Oosterhout Kyle, Chilundo Ashley, Branco Mariana P, Aarnoutse Erik J, Timmermans Martijn, Fattori Marco, Ramsey Nick F, Cantatore Eugenio
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5612AP, The Netherlands.
UMC Utrecht Brain Center, Department of Neurology and Neurosurgery University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
Adv Sci (Weinh). 2025 Feb;12(6):e2408576. doi: 10.1002/advs.202408576. Epub 2024 Dec 18.
Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing. The circuit achieves only 70nV per sqrt(Hz) input referred noise, consuming 46µW, or 3.5mW cm. It demonstrates for the first time in literature a flexible front-end with a noise efficiency factor comparable with Silicon solutions (NEF = 9.8), which is more than 10X lower compared to previously reported flexible front-ends. These results have been achieved using a modified bootstrap-load amplifier. The front end is tested by playing through it recordings obtained from a conventional BCI system. A gesture classification based on the flexible front-end outputs achieves 94% accuracy. Using a flexible active front end can improve the state-of-the-art in high channel count BCI systems by lowering the multiplexer noise and enabling larger areas of the brain to be monitored while reducing power density. Therefore, this work enables a new generation of high channel-count active BCI electrode grids.
脑机接口(BCIs)正朝着更高电极数量和完全可植入的解决方案发展,这需要极低的功率密度(<15mW/cm²)。为实现这一目标,并允许大量且可扩展的通道数量,可将柔性电子器件用作多路复用接口。这项工作介绍了一种采用非晶铟镓锌氧化物(a-IGZO)薄膜晶体管(TFT)在箔片上制造的有源模拟前端,该前端能够进行有源矩阵多路复用。该电路每√Hz输入参考噪声仅为70nV,功耗为46µW,即3.5mW/cm²。它在文献中首次展示了一种噪声效率因子与硅解决方案相当(NEF = 9.8)的柔性前端,与先前报道的柔性前端相比,该因子低了10倍以上。这些结果是通过使用改进的自举负载放大器实现的。通过该前端播放从传统BCI系统获得的记录来对其进行测试。基于柔性前端输出的手势分类准确率达到了94%。使用柔性有源前端可以通过降低多路复用器噪声、使大脑更大区域得到监测并同时降低功率密度来改进高通道数BCI系统的现有技术水平。因此,这项工作促成了新一代高通道数有源BCI电极网格的诞生。