Suppr超能文献

基于金属氧化物薄膜电子学的用于高分辨率皮层映射的多路复用表面电极阵列

Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping.

作者信息

Londoño-Ramírez Horacio, Huang Xiaohua, Cools Jordi, Chrzanowska Anna, Brunner Clément, Ballini Marco, Hoffman Luis, Steudel Soeren, Rolin Cédric, Mora Lopez Carolina, Genoe Jan, Haesler Sebastian

机构信息

Department of Neuroscience, Leuven Brain Institute, Katholieke Universiteit (KU) Leuven, Leuven, 3001, Belgium.

Neuroelectronics Research Flanders (NERF), Leuven, 3001, Belgium.

出版信息

Adv Sci (Weinh). 2024 Mar;11(10):e2308507. doi: 10.1002/advs.202308507. Epub 2023 Dec 25.

Abstract

Electrode grids are used in neuroscience research and clinical practice to record electrical activity from the surface of the brain. However, existing passive electrocorticography (ECoG) technologies are unable to offer both high spatial resolution and wide cortical coverage, while ensuring a compact acquisition system. The electrode count and density are restricted by the fact that each electrode must be individually wired. This work presents an active micro-electrocorticography (µECoG) implant that tackles this limitation by incorporating metal oxide thin-film transistors (TFTs) into a flexible electrode array, allowing to address multiple electrodes through a single shared readout line. By combining the array with an incremental-ΔΣ readout integrated circuit (ROIC), the system is capable of recording from up to 256 electrodes virtually simultaneously, thanks to the implemented 16:1 time-division multiplexing scheme, offering lower noise levels than existing active µECoG arrays. In vivo validation is demonstrated acutely in mice by recording spontaneous activity and somatosensory evoked potentials over a cortical surface of ≈8×8 mm . The proposed neural interface overcomes the wiring bottleneck limiting ECoG arrays, holding promise as a powerful tool for improved mapping of the cerebral cortex and as an enabling technology for future brain-machine interfaces.

摘要

电极网格用于神经科学研究和临床实践,以记录大脑表面的电活动。然而,现有的无源皮质脑电图(ECoG)技术无法在确保采集系统紧凑的同时,实现高空间分辨率和广泛的皮质覆盖。电极数量和密度受到每个电极必须单独布线这一事实的限制。这项工作提出了一种有源微皮质脑电图(µECoG)植入物,通过将金属氧化物薄膜晶体管(TFT)集成到柔性电极阵列中来解决这一限制,从而允许通过单一共享读出线寻址多个电极。通过将该阵列与增量-ΔΣ读出集成电路(ROIC)相结合,由于实施了16:1时分复用方案,该系统能够几乎同时从多达256个电极进行记录,其噪声水平低于现有的有源µECoG阵列。通过在约8×8毫米的皮质表面记录自发活动和体感诱发电位,在小鼠中急性地证明了体内验证。所提出的神经接口克服了限制ECoG阵列的布线瓶颈,有望成为改善大脑皮层映射的强大工具以及未来脑机接口的使能技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验