Drozdov Ignat, Szubert Benjamin, Murphy Clare, Brooksbank Katriona, Lowe David J
Bering Limited, London, United Kingdom.
Cardiology, Royal Alexandra Hospital, Paisley, United Kingdom.
PLoS One. 2024 Dec 18;19(12):e0314145. doi: 10.1371/journal.pone.0314145. eCollection 2024.
Heart Failure (HF) is common, with worldwide prevalence of 1%-3% and a lifetime risk of 20% for individuals 40 years or older. Despite its considerable health economic burden, techniques for early detection of HF in the general population are sparse. In this work we tested the hypothesis that a simple Transformer neural network, trained on comprehensive collection of secondary care data across the general population, can be used to prospectively (three-year predictive window) identify patients at an increased risk of first hospitalisation due to HF (HHF). The model was trained using routinely-collected, secondary care health data, including patient demographics, A&E attendances, hospitalisations, outpatient data, medications, blood tests, and vital sign measurements obtained across five years of longitudinal electronic health records (EHRs). The training cohort consisted of n = 183,894 individuals (n = 161,658 age/sex-matched controls and n = 22,236 of first hospitalisation due to HF after a three-year predictive window). Model performance was validated in an independent testing set of n = 8,977 patients (n = 945 HHF patients). Testing set probabilities were well-calibrated and achieved good discriminatory power with Area Under Receiver Operating Characteristic Curve (AUROC]) of 0.86, sensitivity of 36.4% (95% CI: 33.33%-39.56%), specificity of 98.26% (95% CI: 97.95%-98.53%), and PPV of 69.88% (95% CI: 65.86%-73.62%). At Probability of HHF ≥ 90% the model achieved 100% PPV (95% CI: 96.73%-100%) and sensitivity of 11.7% (95% CI: 9.72%-13.91%). Performance was not affected by patient sex or socioeconomic deprivation deciles. Performance was significantly better in Asian, Black, and Mixed ethnicities (AUROC 0.932-0.945) and in the 79-86 age group (AUROC 0.889). We present the first evidence that routinely collected secondary care health record data can be used in the general population to stratify patients at risk of first HHF.
心力衰竭(HF)很常见,全球患病率为1%-3%,40岁及以上人群的终生风险为20%。尽管其带来了相当大的健康经济负担,但在普通人群中早期检测HF的技术却很少。在这项研究中,我们验证了一个假设,即一个简单的Transformer神经网络,在基于普通人群的二级医疗数据综合收集进行训练后,可用于前瞻性地(三年预测窗口)识别因HF首次住院(HHF)风险增加的患者。该模型使用常规收集的二级医疗健康数据进行训练,这些数据包括患者人口统计学信息、急诊就诊情况、住院情况、门诊数据、用药情况、血液检测结果以及通过五年纵向电子健康记录(EHR)获得的生命体征测量值。训练队列由n = 183,894名个体组成(n = 161,658名年龄/性别匹配的对照者以及n = 22,236名在三年预测窗口后因HF首次住院的患者)。模型性能在一个由n = 8,977名患者组成的独立测试集中得到验证(n = 945名HHF患者)。测试集概率校准良好,在受试者工作特征曲线下面积(AUROC)为0.86时具有良好的区分能力,灵敏度为36.4%(95%置信区间:33.33%-39.56%),特异性为98.26%(95%置信区间:97.95%-98.53%),阳性预测值为69.88%(95%置信区间:65.86%-73.62%)。在HHF概率≥90%时,该模型的阳性预测值达到100%(95%置信区间:96.73%-100%),灵敏度为11.7%(95%置信区间:9.72%-13.91%)。性能不受患者性别或社会经济剥夺十分位数的影响。在亚洲、黑人和混合种族人群(AUROC 0.932 - 0.945)以及79 - 86岁年龄组(AUROC 0.889)中,性能显著更好。我们提供了首个证据,证明常规收集的二级医疗健康记录数据可用于普通人群,以对首次HHF风险患者进行分层。