Gonzalez Kevin C, Negrean Adrian, Liao Zhenrui, Terada Satoshi, Zhang Guofeng, Lee Sungmoo, Ócsai Katalin, Rózsa Balázs J, Lin Michael Z, Polleux Franck, Losonczy Attila
Department of Neuroscience, Columbia University, New York, NY, USA.
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Nature. 2025 Jan;637(8048):1152-1160. doi: 10.1038/s41586-024-08325-9. Epub 2024 Dec 18.
A central question in neuroscience is how synaptic plasticity shapes the feature selectivity of neurons in behaving animals. Hippocampal CA1 pyramidal neurons display one of the most striking forms of feature selectivity by forming spatially and contextually selective receptive fields called place fields, which serve as a model for studying the synaptic basis of learning and memory. Various forms of synaptic plasticity have been proposed as cellular substrates for the emergence of place fields. However, despite decades of work, our understanding of how synaptic plasticity underlies place-field formation and memory encoding remains limited, largely due to a shortage of tools and technical challenges associated with the visualization of synaptic plasticity at the single-neuron resolution in awake behaving animals. To address this, we developed an all-optical approach to monitor the spatiotemporal tuning and synaptic weight changes of dendritic spines before and after the induction of a place field in single CA1 pyramidal neurons during spatial navigation. We identified a temporally asymmetric synaptic plasticity kernel resulting from bidirectional modifications of synaptic weights around the induction of a place field. Our work identified compartment-specific differences in the magnitude and temporal expression of synaptic plasticity between basal dendrites and oblique dendrites. Our results provide experimental evidence linking synaptic plasticity to the rapid emergence of spatial selectivity in hippocampal neurons, a critical prerequisite for episodic memory.
神经科学中的一个核心问题是,突触可塑性如何塑造行为动物中神经元的特征选择性。海马体CA1锥体神经元通过形成被称为位置野的空间和情境选择性感受野,展现出最显著的特征选择性形式之一,这些位置野为研究学习和记忆的突触基础提供了一个模型。各种形式的突触可塑性已被提出作为位置野出现的细胞基础。然而,尽管经过了数十年的研究,我们对突触可塑性如何构成位置野形成和记忆编码的基础的理解仍然有限,这主要是由于缺乏工具以及在清醒行为动物中以单神经元分辨率可视化突触可塑性所面临的技术挑战。为了解决这个问题,我们开发了一种全光学方法,用于监测在空间导航期间单个CA1锥体神经元中位置野诱导前后树突棘的时空调谐和突触权重变化。我们确定了一个由位置野诱导前后突触权重的双向修改所导致的时间不对称突触可塑性内核。我们的研究确定了基底树突和斜向树突之间突触可塑性在幅度和时间表达上的特定区域差异。我们的结果提供了实验证据,将突触可塑性与海马神经元中空间选择性的快速出现联系起来,这是情景记忆的一个关键先决条件。