Suppr超能文献

使用深度学习进行脑肿瘤检测与分割

Brain tumor detection and segmentation using deep learning.

作者信息

Ahsan Rafia, Shahzadi Iram, Najeeb Faisal, Omer Hammad

机构信息

Department of Electrical and Computer Engineering, Medical Image Processing Research Group (MIPRG), COMSATS University Islamabad, Islamabad, Pakistan.

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

出版信息

MAGMA. 2025 Feb;38(1):13-22. doi: 10.1007/s10334-024-01203-5. Epub 2024 Sep 4.

Abstract

OBJECTIVES

Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection algorithms on brain tumor data has not been widely explored. Therefore, we aim to compare different object detection algorithms (Faster R-CNN, YOLO & SSD) for brain tumor detection on MRI data. Furthermore, the best-performing detection network is paired with a 2D U-Net for pixel-wise segmentation of abnormal tumor cells.

MATERIALS AND METHODS

The proposed model was evaluated on the Brain Tumor Figshare (BTF) dataset, and the best-performing detection network cascaded with 2D U-Net for pixel-wise segmentation of tumors. The best-performing detection network was also fine-tuned on BRATS 2018 data to detect and classify the glioma tumor.

RESULTS

For the detection of three tumor types, YOLOv5 achieved the highest mAP of 89.5% on test data compared to other networks. For segmentation, YOLOv5 combined with 2D U-Net achieved a higher DSC compared to the 2D U-Net alone (DSC: YOLOv5 + 2D U-Net = 88.1%; 2D U-Net = 80.5%). The proposed method was compared with the existing detection and segmentation network i.e. Mask R-CNN and achieved a higher mAP (YOLOv5 + 2D U-Net = 89.5%; Mask R-CNN = 67%) and DSC (YOLOv5 + 2D U-Net = 88.1%; Mask R-CNN = 44.2%).

CONCLUSION

In this work, we propose a deep-learning-based method for multi-class tumor detection, classification and segmentation that combines YOLOv5 with 2D U-Net. The results show that the proposed method not only detects different types of brain tumors accurately but also delineates the tumor region precisely within the detected bounding box.

摘要

目标

由于脑肿瘤的异质性,脑肿瘤的检测、分类和分割具有挑战性。有不同的基于深度学习的算法可用于目标检测;然而,检测算法在脑肿瘤数据上的性能尚未得到广泛探索。因此,我们旨在比较不同的目标检测算法(Faster R-CNN、YOLO和SSD)在MRI数据上进行脑肿瘤检测的效果。此外,性能最佳的检测网络与二维U-Net配对,用于对异常肿瘤细胞进行逐像素分割。

材料与方法

在脑肿瘤图共享(BTF)数据集上评估所提出的模型,性能最佳的检测网络与二维U-Net级联,用于肿瘤的逐像素分割。性能最佳的检测网络也在BRATS 2018数据上进行微调,以检测和分类胶质瘤肿瘤。

结果

对于三种肿瘤类型的检测,与其他网络相比,YOLOv5在测试数据上实现了最高的平均精度均值(mAP),为89.5%。对于分割,与单独的二维U-Net相比,YOLOv5与二维U-Net相结合实现了更高的骰子相似系数(DSC)(DSC:YOLOv5 + 二维U-Net = 88.1%;二维U-Net = 80.5%)。将所提出的方法与现有的检测和分割网络即掩膜区域卷积神经网络(Mask R-CNN)进行比较,实现了更高的mAP(YOLOv5 + 二维U-Net = 89.5%;Mask R-CNN = 67%)和DSC(YOLOv5 + 二维U-Net = 88.1%;Mask R-CNN = 44.2%)。

结论

在这项工作中,我们提出了一种基于深度学习的多类肿瘤检测、分类和分割方法,该方法将YOLOv5与二维U-Net相结合。结果表明,所提出的方法不仅能准确检测不同类型的脑肿瘤,还能在检测到的边界框内精确勾勒出肿瘤区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验