Suppr超能文献

SyntheVAEiser:通过基于变分自编码器(VAE)的基因表达样本生成增强传统机器学习方法,以改进癌症亚型预测。

SyntheVAEiser: augmenting traditional machine learning methods with VAE-based gene expression sample generation for improved cancer subtype predictions.

作者信息

Karlberg Brian, Kirchgaessner Raphael, Lee Jordan, Peterkort Matthew, Beckman Liam, Goecks Jeremy, Ellrott Kyle

机构信息

Biomedical Engineering, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239-3098, USA.

Department of Machine Learning, Moffitt Cancer Center, Tampa, USA.

出版信息

Genome Biol. 2024 Dec 18;25(1):309. doi: 10.1186/s13059-024-03431-3.

Abstract

The accuracy of machine learning methods is often limited by the amount of training data that is available. We proposed to improve machine learning training regimes by augmenting datasets with synthetically generated samples. We present a method for synthesizing gene expression samples and test the system's capabilities for improving the accuracy of categorical prediction of cancer subtypes. We developed SyntheVAEiser, a variational autoencoder based tool that was trained and tested on over 8000 cancer samples. We have shown that this technique can be used to augment machine learning tasks and increase performance of recognition of underrepresented cohorts.

摘要

机器学习方法的准确性常常受到可用训练数据量的限制。我们提议通过用合成生成的样本扩充数据集来改进机器学习训练方式。我们提出了一种合成基因表达样本的方法,并测试了该系统在提高癌症亚型分类预测准确性方面的能力。我们开发了SyntheVAEiser,这是一种基于变分自编码器的工具,在8000多个癌症样本上进行了训练和测试。我们已经表明,这项技术可用于扩充机器学习任务,并提高对代表性不足队列的识别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f478/11658131/6a0f85dca25f/13059_2024_3431_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验