Suppr超能文献

构建神经母细胞瘤中与二硫化物依赖性细胞程序性坏死相关的lncRNA特征以用于亚型、预后及免疫治疗研究

Construction of a disulfidptosis-related lncRNAs signature of the subtype, prognostic, and immunotherapy in neuroblastoma.

作者信息

Fu Yongcheng, Zhang Nan, Wang Jingyue, Wang Yuanyuan, Zhang Da

机构信息

Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Department of Emergency, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Transl Cancer Res. 2024 Nov 30;13(11):5909-5928. doi: 10.21037/tcr-24-510. Epub 2024 Nov 25.

Abstract

BACKGROUND

Disulfidptosis is an emerging form of regulated cell death distinguished by abnormal disulfide stress and the collapse of the actin network. This study was to construct a prognostic model based on disulfidptosis-related lncRNAs (DRLs) to enhance survival prediction and assess their viability as biomarkers for immunotherapy response in neuroblastoma (NB).

METHODS

Transcriptomic and clinical data from NB patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. DRLs linked to overall survival (OS) were identified using Pearson correlation and univariate Cox regression analyses. Molecular subtypes of NB were determined through consensus clustering. Immune cell infiltration was assessed with multiple algorithms. A prognostic model was constructed using least absolute shrinkage and selection operator (LASSO) regression. Tumor mutational burden (TMB) analysis on somatic mutations from the TARGET database explored the TMB and risk score relationship. Patient responses to immunotherapy and anti-tumor drugs were predicted using tumor immune dysfunction and exclusion (TIDE), Tumor Inflammation Signature (TIS), Genomics of Drug Sensitivity in Cancer (GDSC) database, and CellMiner tools.

RESULTS

We identified 151 DRLs associated with OS and defined three distinct DRLs subtypes. Using eight of these, we created a prognostic model. This model was proven independently significant and divided NB patients into high and low-risk groups. The high-risk group showed poorer OS, reduced immune cell presence and infiltration, and weaker response to immunotherapy. Conversely, the low-risk group demonstrated potential immunotherapy effectiveness and increased sensitivity to anti-tumor drugs.

CONCLUSIONS

We established a prognostic model based on DRLs to predict the prognosis of NB patients, assess the immune cell infiltration, analyze TMB, evaluate the effectiveness of immunotherapy, and gauge sensitivity to anti-tumor drug treatments.

摘要

背景

二硫化物诱导的细胞焦亡是一种新出现的程序性细胞死亡形式,其特征是异常的二硫键应激和肌动蛋白网络的崩溃。本研究旨在构建基于二硫化物诱导的细胞焦亡相关长链非编码RNA(DRL)的预后模型,以加强生存预测,并评估其作为神经母细胞瘤(NB)免疫治疗反应生物标志物的可行性。

方法

从治疗应用研究以产生有效治疗方法(TARGET)和基因表达综合数据库(GEO)中获取NB患者的转录组和临床数据。使用Pearson相关性分析和单变量Cox回归分析来识别与总生存期(OS)相关的DRL。通过一致性聚类确定NB的分子亚型。使用多种算法评估免疫细胞浸润情况。使用最小绝对收缩和选择算子(LASSO)回归构建预后模型。对来自TARGET数据库的体细胞突变进行肿瘤突变负荷(TMB)分析,以探索TMB与风险评分之间的关系。使用肿瘤免疫功能障碍与排除(TIDE)、肿瘤炎症特征(TIS)、癌症药物敏感性基因组学(GDSC)数据库和CellMiner工具预测患者对免疫治疗和抗肿瘤药物的反应。

结果

我们鉴定出151个与OS相关的DRL,并定义了三种不同的DRL亚型。利用其中8个,我们创建了一个预后模型。该模型被证明具有独立的显著性,并将NB患者分为高风险和低风险组。高风险组的OS较差,免疫细胞存在和浸润减少,对免疫治疗的反应较弱。相反,低风险组显示出潜在的免疫治疗效果和对抗肿瘤药物的敏感性增加。

结论

我们建立了一个基于DRL的预后模型,用于预测NB患者的预后、评估免疫细胞浸润、分析TMB、评估免疫治疗的有效性以及衡量对抗肿瘤药物治疗的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bef/11651765/e8c82ee6a77e/tcr-13-11-5909-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验