Suppr超能文献

基于光学相干断层扫描图像利用深度学习对常见黄斑疾病进行分类:有无先验自动分割的情况

The Classification of Common Macular Diseases Using Deep Learning on Optical Coherence Tomography Images with and without Prior Automated Segmentation.

作者信息

Kaothanthong Natsuda, Limwattanayingyong Jirawut, Silpa-Archa Sukhum, Tadarati Mongkol, Amphornphruet Atchara, Singhanetr Panisa, Lalitwongsa Pawas, Chantangphol Pantid, Amornpetchsathaporn Anyarak, Chainakul Methaphon, Ruamviboonsuk Paisan

机构信息

Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12000, Thailand.

Department of Ophthalmology, Rajavithi Hospital, Bangkok 10400, Thailand.

出版信息

Diagnostics (Basel). 2023 Jan 4;13(2):189. doi: 10.3390/diagnostics13020189.

Abstract

We compared the performance of deep learning (DL) in the classification of optical coherence tomography (OCT) images of macular diseases between automated classification alone and in combination with automated segmentation. OCT images were collected from patients with neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, diabetic macular edema, retinal vein occlusion, cystoid macular edema in Irvine-Gass syndrome, and other macular diseases, along with the normal fellow eyes. A total of 14,327 OCT images were used to train DL models. Three experiments were conducted: classification alone (CA), use of automated segmentation of the OCT images by RelayNet, and the graph-cut technique before the classification (combination method 1 (CM1) and 2 (CM2), respectively). For validation of classification of the macular diseases, the sensitivity, specificity, and accuracy of CA were found at 62.55%, 95.16%, and 93.14%, respectively, whereas the sensitivity, specificity, and accuracy of CM1 were found at 72.90%, 96.20%, and 93.92%, respectively, and of CM2 at 71.36%, 96.42%, and 94.80%, respectively. The accuracy of CM2 was statistically higher than that of CA ( = 0.05878). All three methods achieved AUC at 97%. Applying DL for segmentation of OCT images prior to classification of the images by another DL model may improve the performance of the classification.

摘要

我们比较了深度学习(DL)在黄斑疾病光学相干断层扫描(OCT)图像分类中的性能,分别评估了单独自动分类以及与自动分割相结合的情况。从患有新生血管性年龄相关性黄斑变性、息肉样脉络膜血管病变、糖尿病性黄斑水肿、视网膜静脉阻塞、Irvine-Gass综合征中的黄斑囊样水肿以及其他黄斑疾病的患者,以及对侧正常眼睛收集OCT图像。总共14327张OCT图像用于训练DL模型。进行了三项实验:单独分类(CA)、使用RelayNet对OCT图像进行自动分割,以及在分类前使用图割技术(分别为组合方法1(CM1)和2(CM2))。为了验证黄斑疾病分类的效果,发现CA的敏感性、特异性和准确性分别为62.55%、95.16%和93.14%,而CM1的敏感性、特异性和准确性分别为72.90%、96.20%和93.92%,CM2的分别为71.36%、96.42%和94.80%。CM2的准确性在统计学上高于CA(P = 0.05878)。所有三种方法的曲线下面积(AUC)均达到97%。在通过另一个DL模型对OCT图像进行分类之前,应用DL对OCT图像进行分割可能会提高分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0321/9858554/76a46ea0a44a/diagnostics-13-00189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验