Adams-Tew Samuel I, Odéen Henrik, Parker Dennis L, Cheng Cheng-Chieh, Madore Bruno, Payne Allison, Joshi Sarang
Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
Med Image Comput Comput Assist Interv. 2024 Oct;15011:502-511. doi: 10.1007/978-3-031-72120-5_47. Epub 2024 Oct 3.
This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating and . Varying network architecture and data normalization had substantial impacts on estimated flip angle and , highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.
这项工作研究了配置状态成像与深度神经网络相结合的应用,以开发用于介入环境的定量磁共振成像(MRI)技术。提出了一种针对非均匀场和异质组织的物理建模技术,并用于评估神经网络从配置状态信号数据估计参数图的理论能力。所有测试的归一化策略在估计……时都取得了相似的性能。不同的网络架构和数据归一化对估计的翻转角和……有重大影响,突出了它们在开发神经网络以解决这些逆问题中的重要性。所开发的信号建模技术提供了一个环境,将有助于开发和评估用于磁共振参数映射的物理信息机器学习技术,并促进定量MRI技术的发展,以便在磁共振引导治疗期间为临床决策提供依据。