Hang Xinxin, Wang Xiaoju, Chen Jiaxin, Du Meng, Sun Yangyang, Li Yong, Pang Huan
Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China.
Inorg Chem. 2025 Jan 13;64(1):427-434. doi: 10.1021/acs.inorgchem.4c04771. Epub 2024 Dec 19.
The electric conductivity and charge transport efficiency of metal-organic frameworks (MOFs) dictate the effective utilization of built-in redox centers and electrochemical redox kinetics and therefore electrochemical performance. Reticular chemistry and the tunable microcosmic shape of MOFs allow for improving their electric conductivity and charge transfer efficiency. Herein, we synthesized two Ni-MOFs (Ni-tdc-bpy and Ni-tdc-bpe) by the solvothermal reaction of Ni ions with 2,5-thiophenedicarboxylic acid (Htdc) in the presence of conjugated 4,4'-bipyridyl (bpy) and 1,2-di(4-pyridyl)ethylene (bpe) coligands, respectively. We also synthesized two thinning Ni-MOFs (Ni-tdc-bpy(0.5) and Ni-tdc-bpe(0.5)) by adjusting the amounts of bpy and bpe, respectively. Experimental investigations revealed that linker engineering by tuning the delocalization of the N-donor dipyridyl coligands and size optimization by controlling the amount of the coligand rendered the Ni-MOF with significantly improved electrical conductivity and charge transport efficiency. Among them, Ni-tdc-bpe(0.5) possessing the bpe coligand with more strong delocalization and an optimized size exhibited an enhanced specific capacitance of 650 F g at 0.5 A g. Moreover, the hybrid supercapacitor constructed from Ni-tdc-bpe(0.5) and activated carbon delivered an excellent energy density of 33.6 Wh kg at a power density of 232.6 W kg.
金属有机框架材料(MOFs)的电导率和电荷传输效率决定了其内置氧化还原中心的有效利用率以及电化学氧化还原动力学,进而决定了其电化学性能。MOFs的网状化学结构和可调控的微观形状有助于提高其电导率和电荷转移效率。在此,我们分别通过镍离子与2,5-噻吩二甲酸(Htdc)在共轭的4,4'-联吡啶(bpy)和1,2-二(4-吡啶基)乙烯(bpe)共配体存在下的溶剂热反应,合成了两种镍基MOFs(Ni-tdc-bpy和Ni-tdc-bpe)。我们还分别通过调整bpy和bpe的用量,合成了两种变薄的镍基MOFs(Ni-tdc-bpy(0.5)和Ni-tdc-bpe(0.5))。实验研究表明,通过调节含氮供体联吡啶共配体的离域作用进行连接体工程设计,以及通过控制共配体的用量进行尺寸优化,使得镍基MOF的电导率和电荷传输效率得到显著提高。其中,具有更强离域作用和优化尺寸的bpe共配体的Ni-tdc-bpe(0.5)在0.5 A g时表现出650 F g的增强比电容。此外,由Ni-tdc-bpe(0.5)和活性炭构建的混合超级电容器在功率密度为232.6 W kg时提供了33.6 Wh kg的优异能量密度。