He Deng-Yang, Qiu Kun-Feng, Simon Adam C, Pokrovski Gleb S, Yu Hao-Cheng, Connolly James A D, Li Shan-Shan, Turner Simon, Wang Qing-Fei, Yang Meng-Fan, Deng Jun
Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
Experimental Geosciences Team, Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS, Institut de Recherche pour le Développement, Université de Toulouse III Paul Sabatier, Toulouse F-31400, France.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2404731121. doi: 10.1073/pnas.2404731121. Epub 2024 Dec 19.
Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle. Our model predicts that as much as 1 wt.% of the total dissolved sulfur in slab-derived fluids reacting with mantle rocks is present as the trisulfur radical ion, S. This sulfur ligand stabilizes the aqueous Au(HS)S complex, which can transport Au concentrations of several grams per cubic meter of fluid. Such concentrations are more than three orders of magnitude higher than the average abundance of Au in the mantle. Our data thus demonstrate that an aqueous fluid phase can extract 10 to 100 times more Au than in a fluid-absent rock-melt system during mantle partial melting at redox conditions close to the sulfide-sulfate boundary. We conclude that oxidation by slab-derived fluids is the primary cause of Au mobility and enrichment in the mantle wedge and that aqueous fluid-assisted mantle melting is a prerequisite for formation of Au-rich magmatic hydrothermal and orogenic gold systems in subduction zone settings.
由板块衍生流体驱动的次弧地幔氧化作用被认为有助于在岩浆弧环境中形成金矿床,而地球上大部分金属资源都蕴藏在这种环境中。然而,板块衍生流体渗透到地幔楔中改变其氧化态并影响金富集的机制仍知之甚少。在此,我们展示了一个数值模型的结果,该模型表明板块衍生流体将大量硫酸盐(S)引入上覆地幔楔,相对于原始地幔,其氧逸度增加了3至4个对数单位。我们的模型预测,与地幔岩石反应的板块衍生流体中,多达1 wt.%的总溶解硫以三硫自由基离子S的形式存在。这种硫配体稳定了水相Au(HS)S络合物,该络合物每立方米流体可输送数克金的浓度。这样的浓度比地幔中Au的平均丰度高出三个数量级以上。因此,我们的数据表明,在接近硫化物 - 硫酸盐边界的氧化还原条件下,地幔部分熔融期间,水相流体相比无流体的岩石 - 熔体系统能够萃取多10至100倍的金。我们得出结论,板块衍生流体的氧化作用是地幔楔中金迁移和富集的主要原因,水相流体辅助的地幔熔融是俯冲带环境中形成富金岩浆热液和造山型金系统的先决条件。