Rubinstein Jill C, Domanskyi Sergii, Sheridan Todd B, Sanderson Brian, Park SungHee, Kaster Jessica, Li Haiyin, Anczukow Olga, Herlyn Meenhard, Chuang Jeffrey H
The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.
Department of Surgery, Hartford Healthcare, Hartford, Connecticut.
Cancer Res. 2025 Mar 3;85(5):987-1002. doi: 10.1158/0008-5472.CAN-24-0690.
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. A better understanding of the temporal dynamics and specific pathways leading into and out of the persister state is needed to identify strategies to prevent treatment failure. Using spatial transcriptomics in patient-derived xenograft models, we captured clonal lineage evolution during treatment. The persister state showed increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identified intrinsic and acquired resistance mechanisms (e.g., dual-specific phosphatases, reticulon-4, and cyclin-dependent kinase 2) and suggested specific temporal windows of potential therapeutic susceptibility. Deep learning-enabled analysis of histopathologic slides revealed morphologic features correlating with specific cell states, demonstrating that juxtaposition of transcriptomics and histologic data enabled identification of phenotypically distinct populations from using imaging data alone. In summary, this study defined state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Significance: Tracking clonal progression during treatment uncovers conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance, providing insights into therapy-induced tumor evolution.
BRAF 突变型黑色素瘤对靶向治疗产生耐药性,源于细胞进入持久状态、以相对休眠状态逃避治疗以及重新激活时重新填充肿瘤的能力。为了确定预防治疗失败的策略,需要更好地了解进入和离开持久状态的时间动态以及特定途径。我们在患者来源的异种移植模型中使用空间转录组学,捕捉了治疗期间的克隆谱系进化。持久状态表现为氧化磷酸化增加、增殖减少和侵袭能力增加,并呈现从中心到外周的梯度。系统发育追踪确定了内在和获得性耐药机制(例如双特异性磷酸酶、网织蛋白-4 和细胞周期蛋白依赖性激酶 2),并提示了潜在治疗敏感性的特定时间窗口。基于深度学习的组织病理切片分析揭示了与特定细胞状态相关的形态学特征,表明转录组学和组织学数据的并列使用能够从单独使用成像数据中识别出表型不同的群体。总之,本研究以时空分辨率定义了黑色素瘤治疗期间的状态变化和谱系选择,阐明了治疗药物的选择和时机将如何影响根除耐药克隆的能力。意义:追踪治疗期间的克隆进展揭示了耐药性出现背后保守的全局转录变化以及局部克隆-克隆和空间模式,为治疗诱导的肿瘤进化提供了见解。