Suppr超能文献

使用固定化防污润滑剂涂层对RNA脂质纳米颗粒进行稳健、可扩展的微流体制备。

Robust, Scalable Microfluidic Manufacturing of RNA-Lipid Nanoparticles Using Immobilized Antifouling Lubricant Coating.

作者信息

Hwang Yoon-Ho, Shepherd Sarah J, Kim Dongyoon, Mukalel Alvin J, Mitchell Michael J, Issadore David A, Lee Daeyeon

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Department of Polymer Engineering, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea.

出版信息

ACS Nano. 2025 Jan 14;19(1):1090-1102. doi: 10.1021/acsnano.4c12965. Epub 2024 Dec 19.

Abstract

Despite the numerous advantages demonstrated by microfluidic mixing for RNA-loaded lipid nanoparticle (RNA-LNP) production over bulk methods, such as precise size control, homogeneous distributions, higher encapsulation efficiencies, and improved reproducibility, their translation from research to commercial manufacturing remains elusive. A persistent challenge hindering the adoption of microfluidics for LNP production is the fouling of device surfaces during prolonged operation, which significantly diminishes performance and reliability. The complexity of LNP constituents, including lipids, cholesterol, RNA, and solvent mixtures, makes it difficult to find a single coating that can prevent fouling. To address this challenge, we propose using an immobilized liquid lubricant layer of perfluorodecalin (PFD) to create an antifouling surface that can repel the multiple LNP constituents. We apply this technology to a staggered herringbone microfluidic (SHM) mixing chip and achieve >3 h of stable operation, a >15× increase relative to gold standard approaches. We also demonstrate the compatibility of this approach with a parallelized microfluidic platform that incorporates 256 SHM mixers, with which we demonstrate scale up, stable production at L/h production rates suitable for commercial scale applications. We verify that the LNPs produced on our chip match both the physiochemical properties and performance for both and mRNA delivery as those made on chips without the coating. By suppressing surface fouling with an immobilized liquid lubricant layer, this technology not only enhances RNA-LNP production but also promises to transform the microfluidic manufacturing of diverse materials, ensuring more reliable and robust processes.

摘要

尽管与批量方法相比,微流控混合在生产载RNA脂质纳米颗粒(RNA-LNP)方面展现出诸多优势,如精确的尺寸控制、均匀分布、更高的封装效率和更好的重现性,但从研究到商业制造的转化仍难以实现。阻碍微流控技术用于LNP生产的一个长期挑战是在长时间运行过程中设备表面的污染,这会显著降低性能和可靠性。LNP成分的复杂性,包括脂质、胆固醇、RNA和溶剂混合物,使得很难找到一种能防止污染的单一涂层。为应对这一挑战,我们提议使用全氟萘烷(PFD)的固定化液体润滑层来创建一个防污表面,该表面可以排斥多种LNP成分。我们将这项技术应用于交错式人字形微流控(SHM)混合芯片,实现了超过3小时的稳定运行,相对于金标准方法增加了15倍以上。我们还证明了这种方法与包含256个SHM混合器的并行微流控平台的兼容性,通过该平台我们展示了放大规模、以适合商业规模应用的L/h生产率进行稳定生产。我们验证了在我们芯片上生产的LNP在理化性质和mRNA递送性能方面与未涂覆芯片上生产的LNP相匹配。通过用固定化液体润滑层抑制表面污染,这项技术不仅提高了RNA-LNP的产量,还有望改变多种材料的微流控制造,确保更可靠、更稳健的工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验