Suppr超能文献

多肽:利用多模态学习肽特性的语言图模型

Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties.

作者信息

Badrinarayanan Srivathsan, Guntuboina Chakradhar, Mollaei Parisa, Barati Farimani Amir

机构信息

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States.

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States.

出版信息

J Chem Inf Model. 2025 Jan 13;65(1):83-91. doi: 10.1021/acs.jcim.4c01443. Epub 2024 Dec 19.

Abstract

Peptides are crucial in biological processes and therapeutic applications. Given their importance, advancing our ability to predict peptide properties is essential. In this study, we introduce Multi-Peptide, an innovative approach that combines transformer-based language models with graph neural networks (GNNs) to predict peptide properties. We integrate PeptideBERT, a transformer model specifically designed for peptide property prediction, with a GNN encoder to capture both sequence-based and structural features. By employing a contrastive loss framework, Multi-Peptide aligns embeddings from both modalities into a shared latent space, thereby enhancing the transformer model's predictive accuracy. Evaluations on hemolysis and nonfouling data sets demonstrate Multi-Peptide's robustness, achieving state-of-the-art 88.057% accuracy in hemolysis prediction. This study highlights the potential of multimodal learning in bioinformatics, paving the way for accurate and reliable predictions in peptide-based research and applications.

摘要

肽在生物过程和治疗应用中至关重要。鉴于它们的重要性,提高我们预测肽特性的能力至关重要。在本研究中,我们引入了多肽(Multi-Peptide),这是一种将基于Transformer的语言模型与图神经网络(GNN)相结合以预测肽特性的创新方法。我们将专门为肽特性预测设计的Transformer模型PeptideBERT与GNN编码器集成,以捕获基于序列和结构的特征。通过采用对比损失框架,多肽将来自两种模态的嵌入对齐到一个共享的潜在空间中,从而提高Transformer模型的预测准确性。对溶血和抗污数据集的评估证明了多肽的稳健性,在溶血预测中达到了88.057%的最先进准确率。这项研究突出了多模态学习在生物信息学中的潜力,为基于肽的研究和应用中的准确可靠预测铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5b2/11733943/db34bec14489/ci4c01443_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验