Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
Elife. 2023 May 30;12:e85882. doi: 10.7554/eLife.85882.
Single-molecule tweezers, such as magnetic tweezers, are powerful tools for probing nm-scale structural changes in single membrane proteins under force. However, the weak molecular tethers used for the membrane protein studies have limited the observation of long-time, repetitive molecular transitions due to force-induced bond breakage. The prolonged observation of numerous transitions is critical in reliable characterizations of structural states, kinetics, and energy barrier properties. Here, we present a robust single-molecule tweezer method that uses dibenzocyclooctyne cycloaddition and traptavidin binding, enabling the estimation of the folding 'speed limit' of helical membrane proteins. This method is >100 times more stable than a conventional linkage system regarding the lifetime, allowing for the survival for ~12 hr at 50 pN and ~1000 pulling cycle experiments. By using this method, we were able to observe numerous structural transitions of a designer single-chained transmembrane homodimer for 9 hr at 12 pN and reveal its folding pathway including the hidden dynamics of helix-coil transitions. We characterized the energy barrier heights and folding times for the transitions using a model-independent deconvolution method and the hidden Markov modeling analysis, respectively. The Kramers rate framework yields a considerably low-speed limit of 21 ms for a helical hairpin formation in lipid bilayers, compared to μs scale for soluble protein folding. This large discrepancy is likely due to the highly viscous nature of lipid membranes, retarding the helix-helix interactions. Our results offer a more valid guideline for relating the kinetics and free energies of membrane protein folding.
单分子镊子,如磁镊,是在力的作用下探测单细胞膜蛋白纳米尺度结构变化的有力工具。然而,用于膜蛋白研究的弱分子连接物由于力诱导的键断裂,限制了长时间、重复的分子转变的观察。对大量转变的长时间观察对于结构状态、动力学和能量势垒特性的可靠表征至关重要。在这里,我们提出了一种稳健的单分子镊子方法,该方法使用二苯并环辛炔环加成和链霉亲和素结合,能够估计螺旋膜蛋白的折叠“速度限制”。与传统的连接系统相比,这种方法在寿命方面稳定>100 倍,在 50 pN 下可存活约 12 小时,在 1000 次拉伸循环实验中可存活。通过使用这种方法,我们能够在 12 pN 下观察到设计的单链跨膜同源二聚体的许多结构转变,持续 9 小时,并揭示其折叠途径,包括螺旋-卷曲转变的隐藏动力学。我们使用无模型去卷积方法和隐马尔可夫模型分析分别对转变的能量势垒高度和折叠时间进行了特征化。Kramers 速率框架得出的螺旋发夹在脂质双层中的形成速度限制相当低,为 21 ms,而可溶性蛋白折叠的速度限制为μs 级。这种大的差异很可能是由于脂质膜的高度粘性,阻碍了螺旋-螺旋相互作用。我们的结果为膜蛋白折叠的动力学和自由能提供了更有效的关联指南。