Mason Derek M, Reddy Sai T
Botnar Institute of Immune Engineering, 4056 Basel, Switzerland.
Botnar Institute of Immune Engineering, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland.
Cell Syst. 2024 Dec 18;15(12):1190-1197. doi: 10.1016/j.cels.2024.11.008.
Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune receptors exhibit extensive diversity in their variable domains, enabling them to interact with a plethora of antigens. Despite the significant progress made by AI tools such as AlphaFold in predicting protein structures, challenges remain in accurately modeling the structure and specificity of immune receptors, primarily due to the limited availability of high-quality crystal structures and the complexity of immune receptor-antigen interactions. In this perspective, we highlight recent advancements in sequence-based and structure-based data generation for immune receptors, which are crucial for training machine learning models that predict receptor specificity. We discuss the current bottlenecks and potential future directions in generating and utilizing high-dimensional datasets for predicting and designing the specificity of antibodies and TCRs.
确定适应性免疫受体——B细胞受体(BCRs)、其分泌形式的抗体以及T细胞受体(TCRs)的特异性,对于理解免疫反应以及推进免疫治疗和药物发现至关重要。免疫受体在其可变结构域中表现出广泛的多样性,使其能够与大量抗原相互作用。尽管像AlphaFold这样的人工智能工具在预测蛋白质结构方面取得了重大进展,但在准确模拟免疫受体的结构和特异性方面仍然存在挑战,主要原因是高质量晶体结构的可用性有限以及免疫受体 - 抗原相互作用的复杂性。从这个角度出发,我们强调了免疫受体基于序列和基于结构的数据生成方面的最新进展,这对于训练预测受体特异性的机器学习模型至关重要。我们讨论了在生成和利用高维数据集以预测和设计抗体及TCRs特异性方面当前的瓶颈和潜在的未来方向。