Suppr超能文献

通过机器学习预测适应性免疫受体特异性是一个数据生成问题。

Predicting adaptive immune receptor specificities by machine learning is a data generation problem.

作者信息

Mason Derek M, Reddy Sai T

机构信息

Botnar Institute of Immune Engineering, 4056 Basel, Switzerland.

Botnar Institute of Immune Engineering, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland.

出版信息

Cell Syst. 2024 Dec 18;15(12):1190-1197. doi: 10.1016/j.cels.2024.11.008.

Abstract

Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune receptors exhibit extensive diversity in their variable domains, enabling them to interact with a plethora of antigens. Despite the significant progress made by AI tools such as AlphaFold in predicting protein structures, challenges remain in accurately modeling the structure and specificity of immune receptors, primarily due to the limited availability of high-quality crystal structures and the complexity of immune receptor-antigen interactions. In this perspective, we highlight recent advancements in sequence-based and structure-based data generation for immune receptors, which are crucial for training machine learning models that predict receptor specificity. We discuss the current bottlenecks and potential future directions in generating and utilizing high-dimensional datasets for predicting and designing the specificity of antibodies and TCRs.

摘要

确定适应性免疫受体——B细胞受体(BCRs)、其分泌形式的抗体以及T细胞受体(TCRs)的特异性,对于理解免疫反应以及推进免疫治疗和药物发现至关重要。免疫受体在其可变结构域中表现出广泛的多样性,使其能够与大量抗原相互作用。尽管像AlphaFold这样的人工智能工具在预测蛋白质结构方面取得了重大进展,但在准确模拟免疫受体的结构和特异性方面仍然存在挑战,主要原因是高质量晶体结构的可用性有限以及免疫受体 - 抗原相互作用的复杂性。从这个角度出发,我们强调了免疫受体基于序列和基于结构的数据生成方面的最新进展,这对于训练预测受体特异性的机器学习模型至关重要。我们讨论了在生成和利用高维数据集以预测和设计抗体及TCRs特异性方面当前的瓶颈和潜在的未来方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验