Kumar Vishesh, Bryan J Shepard, Rojewski Alex, Manzo Carlo, Pressé Steve
Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona.
Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain; Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Barcelona, Spain.
Biophys Rep (N Y). 2025 Mar 12;5(1):100194. doi: 10.1016/j.bpr.2024.100194. Epub 2024 Dec 17.
Diffusion coefficients often vary across regions, such as cellular membranes, and quantifying their variation can provide valuable insight into local membrane properties such as composition and stiffness. Toward quantifying diffusion coefficient spatial maps and uncertainties from particle tracks, we develop a Bayesian framework (DiffMAP-GP) by placing Gaussian process (GP) priors on the family of candidate maps. For sake of computational efficiency, we leverage inducing point methods on GPs arising from the mathematical structure of the data giving rise to nonconjugate likelihood-prior pairs. We analyze both synthetic data, where ground truth is known, as well as data drawn from live-cell single-molecule imaging of membrane proteins. The resulting tool provides an unsupervised method to rigorously map diffusion coefficients continuously across membranes without data binning.
扩散系数通常在不同区域有所变化,例如细胞膜,对其变化进行量化能够为诸如组成和硬度等局部膜特性提供有价值的见解。为了从粒子轨迹量化扩散系数空间图及其不确定性,我们通过在候选图族上放置高斯过程(GP)先验来开发一个贝叶斯框架(DiffMAP-GP)。出于计算效率的考虑,我们利用由数据的数学结构产生的非共轭似然-先验对所产生的GP上的诱导点方法。我们分析了已知真实情况的合成数据以及从膜蛋白的活细胞单分子成像中获取的数据。由此产生的工具提供了一种无监督方法,可在不进行数据分箱的情况下,严格地连续绘制跨膜扩散系数图。