Shukla Ankit, Qian Siyuan, Rakheja Shaloo
Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, USA.
Nanoscale Horiz. 2025 Feb 24;10(3):484-511. doi: 10.1039/d4nh00045e.
Antiferromagnetic materials have several unique properties, such as a vanishingly small net magnetization, which generates weak dipolar fields and makes them robust against perturbation from external magnetic fields and rapid magnetization dynamics, as dictated by the geometric mean of their exchange and anisotropy energies. However, experimental and theoretical techniques to detect and manipulate the antiferromagnetic order in a fully electrical manner must be developed to enable advanced spintronic devices with antiferromagnets as their active spin-dependent elements. Among the various antiferromagnetic materials, conducting antiferromagnets offer high electrical and thermal conductivities and strong electron-spin-phonon interactions. Noncollinear metallic antiferromagnets with negative chirality, including MnSn, MnGe, and MnGaN, offer rich physics of spin momentum locking, topologically protected surface states, large spin Hall conductivity, and a magnetic spin Hall effect that arises from their topology. In this review article, we introduce the crystal structure and the physical phenomena, including the anomalous Hall and Nernst effects, spin Hall effect, and magneto-optic Kerr effect, observed in negative chirality antiferromagnets. Experimental advances related to spin-orbit torque-induced dynamics and the impact of the torque on the microscopic spin structure of MnSn are also discussed. Recent experimental demonstrations of a finite room-temperature tunneling magnetoresistance in tunnel junctions with chiral antiferromagnets opens the prospect of developing spintronic devices with fully electrical readout. Applications of chiral antiferromagnets, including non-volatile memory, high-frequency signal generators/detectors, neuro-synaptic emulators, probabilistic bits, thermoelectric devices, and Josephson junctions, are highlighted. We also present analytic models that relate the performance characteristics of the device with its design parameters, thus enabling a rapid technology-device assessment. Effects of Joule heating and thermal noise on the device characteristics are briefly discussed. We close the paper by summarizing the status of research and present our outlook in this rapidly evolving research field.
反铁磁材料具有若干独特性质,例如净磁化强度极小,这会产生微弱的偶极场,使其对外部磁场的扰动具有很强的抗性,并且在其交换能和各向异性能的几何平均值的作用下,具有快速的磁化动力学。然而,必须开发以全电方式检测和操纵反铁磁序的实验和理论技术,以实现以反铁磁体作为其有源自旋相关元件的先进自旋电子器件。在各种反铁磁材料中,导电反铁磁体具有高电导率和热导率以及强电子 - 自旋 - 声子相互作用。具有负手性的非共线金属反铁磁体,包括MnSn、MnGe和MnGaN,具有丰富的自旋动量锁定、拓扑保护表面态、大自旋霍尔电导率以及由其拓扑结构引起的磁自旋霍尔效应等物理特性。在这篇综述文章中,我们介绍了在负手性反铁磁体中观察到的晶体结构和物理现象,包括反常霍尔效应和能斯特效应、自旋霍尔效应以及磁光克尔效应。还讨论了与自旋轨道扭矩诱导动力学相关的实验进展以及该扭矩对MnSn微观自旋结构的影响。最近在手性反铁磁体隧道结中有限室温隧道磁电阻的实验演示为开发具有全电读出的自旋电子器件开辟了前景。重点介绍了手性反铁磁体的应用,包括非易失性存储器、高频信号发生器/探测器、神经突触模拟器、概率比特、热电装置和约瑟夫森结。我们还提出了将器件性能特征与其设计参数相关联的解析模型,从而能够快速进行技术 - 器件评估。简要讨论了焦耳热和热噪声对器件特性的影响。我们通过总结研究现状来结束本文,并对这个快速发展的研究领域提出我们的展望。